解:2+a3+a2-a+1 令t=cosx.. 0≤t≤1 則g2+a3+a2-a+1 10若a<0.則當t=0時.M=a3-a+1 20若0≤a≤1.則當t=a時.M=a3+a2-a+1 30若a>1.則當t=1時.M=a3+a ∴M(a)= =a3-a+1 ∴M’(a)=3a2-1=3(a+)(a-) 令M’(a)=0.得a1=-.或a2= 且M(-)=(-)3-(-)+1=+1 當0≤a<1時.M(a)=a3+a2-a+1 ∴M’(a)=3a2+2a-1= 令M’(a)=0.得a3=.或a4=-1 且M()=()3+()2-+1= 列表如下 a -1 (1.-) - (-.0) 0 (0.) (.1) 1 M’(a) + - + M(a) 1 +1 1 2 從上表可知: 當a=1時.M(a)取得最大值2 當a=時.M(a)取得最小值. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.

(1)求函數f(x)的表達式;

(2)若數列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數列,q=.又∵a1,∴b1-1=,

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

已知函數f(x)=sin(ωx+φ) (0<φ<π,ω>0)過點,函數y=f(x)圖象的兩相鄰對稱軸間的距離為.

(1) 求f(x)的解析式;

(2) f(x)的圖象向右平移個單位后,得到函數y=g(x)的圖象,求函數g(x)的單調遞減區(qū)間.

【解析】本試題主要考查了三角函數的圖像和性質的運用,第一問中利用函數y=f(x)圖象的兩相鄰對稱軸間的距離為.得,所以

第二問中,,

   可以得到單調區(qū)間。

解:(Ⅰ)由題意得,,…………………1分

代入點,得…………1分

,    ∴

(Ⅱ),   的單調遞減區(qū)間為.

 

查看答案和解析>>

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知二次函數的二次項系數為,且不等式的解集為,

(1)若方程有兩個相等的根,求的解析式;

(2)若的最大值為正數,求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設出二次函數的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當f(x)的最大值為正數時,實數a的取值范圍是

 

查看答案和解析>>

解答題:解答應寫出必要的文字說明,證明過程或演算步驟.

,其中>0,記函數f(x)=(+k.

(1)

f(x)圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍.

(2)

f(x)的最小正周期為,且當x時,f(x)的最大值是,求f(x)的解析式,并說明如何由y=sinx的圖象變換得到y=f(x)的圖象.

查看答案和解析>>


同步練習冊答案