題目列表(包括答案和解析)
1 |
S1 |
1 |
S2 |
1 |
Sn |
| ||
2 |
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當(dāng)時(shí),則
即,其中是大于等于的整數(shù)
反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當(dāng)時(shí),則即,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
由,得
當(dāng)為奇數(shù)時(shí),此時(shí),一定有和使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com