解:(1)由題意知5×100+100n=50nx 3分 (2)設(shè)總損失費(fèi)用為y元.則 y=125nx+100x+60(n+5)×100 7分 由(1)知n=.代入上式并整理得: y=31450++100(x-2)≥31450+2=36450(元) 10分 上式等號(hào)成立時(shí).當(dāng)且僅當(dāng)=100(x-2)時(shí). 所以當(dāng)x=27時(shí).才能使總損失最小. 12分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) R).

(Ⅰ)若 ,求曲線(xiàn)  在點(diǎn)  處的的切線(xiàn)方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問(wèn)中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:

第二問(wèn)中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱(chēng)軸,

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線(xiàn)的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線(xiàn)l與橢圓E交于A(yíng)、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線(xiàn)l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線(xiàn)的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線(xiàn)l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線(xiàn)OC斜率為1,由此設(shè)直線(xiàn)l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線(xiàn)l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線(xiàn)l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知冪函數(shù)滿(mǎn)足。

(1)求實(shí)數(shù)k的值,并寫(xiě)出相應(yīng)的函數(shù)的解析式;

(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問(wèn)中利用,冪函數(shù)滿(mǎn)足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線(xiàn)開(kāi)口向下,對(duì)稱(chēng)軸方程為:,結(jié)合二次函數(shù)的對(duì)稱(chēng)軸,和開(kāi)口求解最大值為5.,得到

(1)對(duì)于冪函數(shù)滿(mǎn)足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),,

當(dāng)k=1時(shí),,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線(xiàn)開(kāi)口向下,對(duì)稱(chēng)軸方程為:,

當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿(mǎn)足題意

 

查看答案和解析>>


同步練習(xí)冊(cè)答案