設(shè)遞增正數(shù)列a1.a2.-.an是分母為60的最簡真分?jǐn)?shù).則π= A.0 B.8 C.16 D.30 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,S5=a32
(1)求通項an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
(3)試構(gòu)造一個函數(shù)g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且對任意的m∈(
1
4
,
1
3
)
,均存在正整數(shù)N,使得當(dāng)n>N時,f(n)>m.

查看答案和解析>>

已知函數(shù)
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若且關(guān)于x的方程在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)設(shè)各項為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*用數(shù)學(xué)歸納法證明:an≤2n-1

查看答案和解析>>

已知函數(shù)
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若且關(guān)于x的方程在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)設(shè)各項為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*用數(shù)學(xué)歸納法證明:an≤2n-1

查看答案和解析>>

已知函數(shù)
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若且關(guān)于x的方程在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)設(shè)各項為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*用數(shù)學(xué)歸納法證明:an≤2n-1

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,
(1)求通項an;
(2)令bn=,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
(3)試構(gòu)造一個函數(shù)g(x),使恒成立,且對任意的,均存在正整數(shù)N,使得當(dāng)n>N時,f(n)>m.

查看答案和解析>>


同步練習(xí)冊答案