題目列表(包括答案和解析)
(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線(xiàn)相切
于坐標(biāo)原點(diǎn).橢圓與圓的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程;
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于
線(xiàn)段的長(zhǎng).若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線(xiàn)相切
于坐標(biāo)原點(diǎn).橢圓與圓的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程;
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于
線(xiàn)段的長(zhǎng).若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
.(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系上,設(shè)不等式組()所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/d/qmkmd.gif" style="vertical-align:middle;" />,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為.(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;(Ⅱ)設(shè)數(shù)列的前r項(xiàng)和為,數(shù)列的前r項(xiàng)和,是否存在自然數(shù)m?使得對(duì)一切,恒成立。若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由。
(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程
(2)是否存在以為直角頂點(diǎn)且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請(qǐng)說(shuō)明理由
(本小題滿(mǎn)分14分)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且三角形POA的三邊所在直線(xiàn)的斜率滿(mǎn)足kOP+kOA=kPA.
( I)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且,直線(xiàn)OP與QA交于點(diǎn)M,問(wèn):是否存在點(diǎn)P使得△PQA和△PAM的面積滿(mǎn)足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com