題目列表(包括答案和解析)
(三)鞏固練習(xí)
1.已知圓的方程是x2+y2=1,求:
(1)斜率為1的切線方程;
2.(1)圓(x-1)2+(y+2)2=4上的點(diǎn)到直線2x-y+1=0的最短距離是
(2)兩圓C1∶x2+y2-4x+2y+4=0與C2∶x2+y2+2x-6y-26=0的位置關(guān)系是______.(內(nèi)切)
由學(xué)生口答.
3.未經(jīng)過原點(diǎn),且過圓x2+y2+8x-6y+21=0和直線x-y+5=0的兩個(gè)交點(diǎn)的圓的方程.
分析:若要先求出直線和圓的交點(diǎn),根據(jù)圓的一般方程,由三點(diǎn)可求得圓的方程;若沒過交點(diǎn)的圓系方程,由此圓系過原點(diǎn)可確定參數(shù)λ,從而求得圓的方程.由兩個(gè)同學(xué)演板給出兩種解法:
解法一:
設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0.
∵(0,0),(-2,3),(-4,1)三點(diǎn)在圓上,
解法二:
設(shè)過交點(diǎn)的圓系方程為:
x2+y2+8x-6y+21+λ(x-y+5)=0.
(二)應(yīng)用舉例
和切點(diǎn)坐標(biāo).
分析:求已知圓的切線問題,基本思路一般有兩個(gè)方面:(1)從代數(shù)特征分析;(2)從幾何特征分析.一般來(lái)說,從幾何特征分析計(jì)算量要小些.該例題由學(xué)生演板完成.
∵圓心O(0,0)到切線的距離為4,
把這兩個(gè)切線方程寫成
注意到過圓x2+y2=r2上的一點(diǎn)P(x0,y0)的切線的方程為x0x+y0y=r2,
例2 已知實(shí)數(shù)A、B、C滿足A2+B2=2C2≠0,求證直線Ax+By+C=0與圓x2+y2=1交于不同的兩點(diǎn)P、Q,并求弦PQ的長(zhǎng).
分析:證明直線與圓相交既可以用代數(shù)方法列方程組、消元、證明△>0,又可以用幾何方法證明圓心到直線的距離小于圓半徑,由教師完成.
證:設(shè)圓心O(0,0)到直線Ax+By+C=0的距離為d,則d=
∴直線Ax+By+C=0與圓x2+y1=1相交于兩個(gè)不同點(diǎn)P、Q.
例3 求以圓C1∶x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦為直徑的圓的方程.
解法一:
相減得公共弦所在直線方程為4x+3y-2=0.
∵所求圓以AB為直徑,
于是圓的方程為(x-2)2+(y+2)2=25.
解法二:
設(shè)所求圓的方程為:
x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ為參數(shù))
∵圓心C應(yīng)在公共弦AB所在直線上,
∴ 所求圓的方程為x2+y2-4x+4y-17=0.
小結(jié):
解法一體現(xiàn)了求圓的相交弦所在直線方程的方法;解法二采取了圓系方程求待定系數(shù),解法比較簡(jiǎn)練.
(一)知識(shí)準(zhǔn)備
我們今天研究的課題是“點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系”,為了更好地講解這個(gè)課題,我們先復(fù)習(xí)歸納一下點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系中的一些知識(shí).
1.點(diǎn)與圓的位置關(guān)系
設(shè)圓C∶(x-a)2+(y-b)2=r2,點(diǎn)M(x0,y0)到圓心的距離為d,則有:
(1)d>r 點(diǎn)M在圓外;
(2)d=r 點(diǎn)M在圓上;
(3)d<r 點(diǎn)M在圓內(nèi).
2.直線與圓的位置關(guān)系
設(shè)圓 C∶(x-a)2+(y-b)=r2,直線l的方程為Ax+By+C=0,圓心(a,
判別式為△,則有:
(1)d<r 直線與圓相交;
(2)d=r 直線與圓相切;
(3)d<r 直線與圓相離,即幾何特征;
或(1)△>0 直線與圓相交;
(2)△=0 直線與圓相切;
(3)△<0 直線與圓相離,即代數(shù)特征,
3.圓與圓的位置關(guān)系
設(shè)圓C1:(x-a)2+(y-b)2=r2和圓C2:(x-m)2+(y-n)2=k2(k≥r),且設(shè)兩圓圓心距為d,則有:
(1)d=k+r 兩圓外切;
(2)d=k-r 兩圓內(nèi)切;
(3)d>k+r 兩圓外離;
(4)d<k+r 兩圓內(nèi)含;
(5)k-r<d<k+r 兩圓相交.
4.其他
(1)過圓上一點(diǎn)的切線方程:
①圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則此點(diǎn)的切線方程為x0x+y0y=r2(課本命題).
②圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).
(2)相交兩圓的公共弦所在直線方程:
設(shè)圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0,若兩圓相交,則過兩圓交點(diǎn)的直線方程為(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(3)圓系方程:
①設(shè)圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0.若兩圓相交,則過交點(diǎn)的圓系方程為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ為參數(shù),圓系中不包括圓C2,λ=-1為兩圓的公共弦所在直線方程).
②設(shè)圓C∶x2+y2+Dx+Ey+F=0與直線l:Ax+By+C=0,若直線與圓相交,則過交點(diǎn)的圓系方程為x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ為參數(shù)).
歸納講授、學(xué)生演板、重點(diǎn)講解、鞏固練習(xí).
2.難點(diǎn):圓(x-a)2+(y-b)2=r2上一點(diǎn)(x0,y0)的切線方程的證明.
(解決辦法:仿照課本上圓x2+y2=r2上一點(diǎn)(x0,y0)切線方程的證明.)
1.重點(diǎn):(1)直線和圓的相切(圓的切線方程)、相交(弦長(zhǎng)問題);(2)圓系方程應(yīng)用.
(解決辦法:(1)使學(xué)生掌握相切的幾何特征和代數(shù)特征,過圓上一點(diǎn)的圓的代線方程,弦長(zhǎng)計(jì)算問題;(2)給學(xué)生介紹圓與圓相交的圓系方程以及直線與圓相交的圓系方程.)
(三)學(xué)科滲透點(diǎn)
點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系在初中平面幾何已進(jìn)行了分析,現(xiàn)在是用代數(shù)方法來(lái)分析幾何問題,是平面幾何問題的深化.
(二)能力訓(xùn)練點(diǎn)
通過點(diǎn)與圓、直線與圓以及圓與圓位置關(guān)系的教學(xué),培養(yǎng)學(xué)生綜合運(yùn)用圓有關(guān)方面知識(shí)的能力.
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生掌握點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系;過圓上一點(diǎn)的圓的切線方程,判斷直線與圓相交、相切、相離的代數(shù)方法與幾何方法;兩圓位置關(guān)系的幾何特征和代數(shù)特征.
5.正方形中心在C(-1,0),一條邊所在直線方程是3x-y二0,求其它三邊所在的直線方程.
解:此題是例3交換條件與結(jié)論后的題:
x+3y-5=0, x+3y+7=0, 3x-y+9=0.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com