題目列表(包括答案和解析)
19.(本小題14分)
如圖, 和兩點分別在射線OS、OT上移動,且,O為坐標(biāo)原點,動點P滿足.
(Ⅰ)求的值;
(Ⅱ)求P點的軌跡C的方程,并說明它表示怎樣
的曲線?
(Ⅲ)若直線l過點E(2,0)交(Ⅱ)中曲線C于M、N兩
點,且,求l的方程.
解:(Ⅰ)由已知得
…………4分
(Ⅱ)設(shè)P點坐標(biāo)為(x,y)(x>0),由得
…………5分
∴ 消去m,n可得
,又因 8分
∴ P點的軌跡方程為
它表示以坐標(biāo)原點為中心,焦點在軸上,且實軸長為2,焦距為4的雙曲線
的右支 …………9分
(Ⅲ)設(shè)直線l的方程為,將其代入C的方程得
即
易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)
又
設(shè),則
∵ l與C的兩個交點在軸的右側(cè)
∴ ,即
又由 同理可得 …………11分
由得
∴
由得
由得
消去得
解之得: ,滿足 …………13分
故所求直線l存在,其方程為:或 …………14分
18.(本小題13分)
已知: ,.
(I)求、、;
(II)求數(shù)列的通項公式;
(II)求證:
解:(I)由已知,所以 1分
,所以
,所以 3分
(II)
即
所以對于任意的, 7分
(III)
∴ ①
、
①─②,得
9分
∴, 12分
又=1,2,3…,故< 1 13分
17.(本小題13分)
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD, ,,E是BD的中點.
(Ⅰ)求證:EC//平面APD;
(Ⅱ)求BP與平面ABCD所成角的正切值;
(Ⅲ) 求二面角P-AB-D的大小.
解法一:(Ⅰ)如圖,取PA中點F,連結(jié)EF、FD,
∵E是BP的中點,
∵EF//AB且,
又∵
∴EFDC∴四邊形EFDC是平行四邊形,故得EC//FD …………2分
又∵EC平面PAD,F(xiàn)D平面PAD
∴EC//平面ADE …………4分
(Ⅱ)取AD中點H,連結(jié)PH,因為PA=PD,所以PH⊥AD
∵平面PAD⊥平面ABCD于AD
∴PH⊥面ABCD
∴HB是PB在平面ABCD內(nèi)的射影
∴∠PBH是PB與平面ABCD所成角 …………6分
∵四邊形ABCD中,
∴四邊形ABCD是直角梯形
設(shè)AB=2a,則,
在中,易得,
,
又∵,
∴是等腰直角三角形,
∴
∴在中, …………10分
(Ⅲ)在平面ABCD內(nèi)過點H作AB的垂線交AB于G點,連結(jié)PG,則HG是PG在平面ABCD上的射影,故PG⊥AB,所以∠PGH是二面角P-AB-D的平面角,由AB=2a …………11分
,又∴
在中, 13分
∴二面角P-AB-D的大小為 …………14分
解法二:(Ⅰ)同解法一 4分
(Ⅱ)設(shè)AB=2a,同解法一中的(Ⅱ)可得
如圖,以D點為原點,DA所在直線為x軸,DB所在直線為y軸,過D點且垂直于平面ABCD的直線為z軸建立空間直角坐標(biāo)系. …………5分
則,,則,平面ABCD的一個法向量為m=(0,0,1), …………7分
所以,
可得PB與平面ABCD所成角的正弦值為
所以 PB與平面ABCD所成角的正切值為 …………10分
(Ⅲ)易知,則,設(shè)平面PAB的一個法向量為,則
,令,可得……12分
得,
所以二面角P-AB-D的大小為…………14分
16.(本小題13分)
某公司有10萬元資金用于投資,如果投資甲項目,根據(jù)市場分析知道:一年后可能獲利10﹪,可能損失10﹪,可能不賠不賺,這三種情況發(fā)生的概率分別為,,;如果投資乙項目,一年后可能獲利20﹪,也可能損失20﹪,這兩種情況發(fā)生的概率分別為.
(Ⅰ)如果把10萬元投資甲項目,用表示投資收益(收益=回收資金-投資資金),
求的概率分布及;
(Ⅱ)若把10萬元投資投資乙項目的平均收益不低于投資甲項目的平均收益,求的取值范圍.
解:(Ⅰ)依題意,的可能取值為1,0,-1 …………1分
的分布列為
|
1 |
0 |
|
p |
|
|
|
…………4分
==…………6分
(Ⅱ)設(shè)表示10萬元投資乙項目的收益,則的分布列為
|
2 |
|
p |
|
|
…………8分
…………10分
依題意要求
…………13分
注:只寫出扣1分
15.(本小題12分)
已知為鈍角,且
求: (Ⅰ);
(Ⅱ).
解: (Ⅰ)由已知: …………………2分
得 …………………5分
(Ⅱ)
…………………8分
∵且
∴ …………………10分
∴
…………………12分
14.?dāng)?shù)列{ a},{ b}()由下列條件所確定:
(ⅰ)a1<0, b1>0 ;
(ⅱ)≥2時,ak與bk滿足如下條件:
當(dāng)時,ak= ak-1, bk=;
當(dāng)時,ak= , bk=b k-1.
那么,當(dāng)a1=-5,b1=5時, { a}的通項公式為
當(dāng)b1> b2>…>bn(n≥2)時,用a1,b1表示{ bk }的通項公式為bk= (k=2,3…,n).
(1);(2)
13.有這樣一種數(shù)學(xué)游戲:在的表格中,要求每個格子中都填上1、2、3三個數(shù)字中的某一個數(shù)字,且每一行和每一列都不能出現(xiàn)重復(fù)的數(shù)字,則此游戲共有 12 種不同的填法
12.已知函數(shù),若≥2,則的取值范圍是
11.已知向量=(4, 0),=(2, 2),則= (-2,2) ;與的夾角的大小為 90°
10.一個與球心距離為2的平面截球所得的圓面面積為,則球的表面積為 20
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com