(1)試將生產(chǎn)這種儀器的元件每天的盈利額表示為日產(chǎn)量的函數(shù)(2)當(dāng)日產(chǎn)量為多少時.可獲得最大利潤? 查看更多

 

題目列表(包括答案和解析)

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,次品數(shù)P(萬件)與日產(chǎn)量x(萬件)之間滿足關(guān)系:P=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
已知每生產(chǎn)l萬件合格的元件可以盈利2萬元,但每生產(chǎn)l萬件次品將虧損1萬元.(利潤=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x定為多少時獲得的利潤最大,最大利潤為多少?

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率與日產(chǎn)量(萬件)之間大體滿足關(guān)系:(其中為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.(1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

 

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會產(chǎn)生較多次品,根據(jù)經(jīng)驗知道,次品數(shù)p(萬件)與日產(chǎn)量x(萬件)之間滿足關(guān)系:數(shù)學(xué)公式.已知每生產(chǎn)l萬件合格的元件可以盈利20萬元,但每產(chǎn)生l萬件次品將虧損10萬元.(實際利潤=合格產(chǎn)品的盈利-生產(chǎn)次品的虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的實際利潤T(萬元) 表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x(萬件) 定為多少時獲得的利潤最大,最大利潤為多少?

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系:P=(其中c為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率與日產(chǎn)量(萬件)之間滿足關(guān)系:

(其中為小于6的正常數(shù))

(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

    (1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);

    (2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

一.選擇題

1~10  BADDA    BCBCD

二.填空題

11.2      12.      13.      14.8        15.45

三.解答題

16.解:因為,所以 ………………………………(1分)

   由,解得 ………………………………(3分)

  因為,故集合應(yīng)分為兩種情況

(1)時,  …………………………………(6分)

(2)時,  ……………………………………(8分)

所以     …………………………………………………(9分)

假,則…………………………………………………………(10分)

真,則  ……………………………………………………………(11分)

故實數(shù)的取值范圍為………………………………………(12分)

17.解:(1)由1的解集有且只有一個元素知

        ………………………………………(2分)

當(dāng)時,函數(shù)上遞增,此時不滿足條件2

綜上可知  …………………………………………(3分)

 ……………………………………(6分)

(2)由條件可知……………………………………(7分)

當(dāng)時,令

所以……………………………………………………………(9分)

時,也有……………………………(11分)

綜上可得數(shù)列的變號數(shù)為3……………………………………………(12分)

18.解:(1)當(dāng)時,………………………(1分)

 當(dāng)時,……………………(2分)

,知又是周期為4的函數(shù),所以

當(dāng)

…………………………(4分)

當(dāng)

…………………………(6分)

故當(dāng)時,函數(shù)的解析式為

………………………………(7分)

(2)當(dāng)時,由,得

解上述兩個不等式組得…………………………………………(10分)

的解集為…………………(12分)

19.解:(1)當(dāng)時,,……………………(2分)

當(dāng)時,,

綜上,日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù)關(guān)系為:

…………………………………………………………(4分)

(2)由(1)知,當(dāng)時,每天的盈利額為0……………………………(6分)

        當(dāng)時,

當(dāng)且僅當(dāng)時取等號

所以當(dāng)時,,此時……………………………(8分)

            當(dāng)時,由

函數(shù)上遞增,,此時……(10分)

綜上,若,則當(dāng)日產(chǎn)量為3萬件時,可獲得最大利潤

        若,則當(dāng)日產(chǎn)量為萬件時,可獲得最大利潤…………(12分)

20.解:(1)將點代入

       因為直線,所以……………………………………(3分)

       (2) ,

當(dāng)為偶數(shù)時,為奇數(shù),……………(5分)

當(dāng)為奇數(shù)時,為偶數(shù),(舍去)

綜上,存在唯一的符合條件…………………………………………………(7分)

(3)證明不等式即證明

     成立,下面用數(shù)學(xué)歸納法證明

1當(dāng)時,不等式左邊=,原不等式顯然成立………………………(8分)

2假設(shè)時,原不等式成立,即

    當(dāng)

     =

,即時,原不等式也成立 ………………(11分)

根據(jù)12所得,原不等式對一切自然數(shù)都成立 ……………………………(13分)

21.解:(1)由……………………(1分)

     

     又的定義域為,所以

當(dāng)時,

當(dāng)時,,為減函數(shù)

當(dāng)時,,為增函數(shù)………………………(5分)

   所以當(dāng)時,的單調(diào)遞增區(qū)間為

                         單調(diào)遞減區(qū)間為…………………(6分)

(2)由(1)知當(dāng)時,遞增無極值………(7分)

所以處有極值,故

     因為,所以上單調(diào)

     當(dāng)為增區(qū)間時,恒成立,則有

    ………………………………………(9分)

當(dāng)為減區(qū)間時,恒成立,則有

無解  ……………………(13分)

由上討論得實數(shù)的取值范圍為 …………………………(14分)

 

 

 


同步練習(xí)冊答案