即當時.也成立. 查看更多

 

題目列表(包括答案和解析)

 已知命題及其證明:

(1)當時,左邊=1,右邊=所以等式成立;

(2)假設時等式成立,即成立,

則當時,,所以時等式也成立。

由(1)(2)知,對任意的正整數n等式都成立。      

經判斷以上評述

A.命題、推理都正確      B命題不正確、推理正確 

C.命題正確、推理不正確      D命題、推理都不正確

 

查看答案和解析>>

教材中是用“AB且BA,則A=B”來定義的,實際上也可以說當集合A與B的元素完全相同時,則A________B.教材中的定義實際上給出了一種證明兩個集合相等的方法,即欲證A=B,只需證AB與BA都成立即可.

查看答案和解析>>

已知函數.(

(1)若在區(qū)間上單調遞增,求實數的取值范圍;

(2)若在區(qū)間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區(qū)間上,函數的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數,并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數;

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導,得

,則得到結論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,;

時,;

時,

猜想:當時,運用數學歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導,得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

時,;

時,;

時,;                              …………6分

猜想:當時,,下面用數學歸納法證明:

由上述過程可知,時結論成立,

假設當時結論成立,即,

時,

時結論也成立,

∴當時,成立。                          …………11分

綜上得,當時,;

時,;

時, 

 

查看答案和解析>>

已知數列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數,不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>


同步練習冊答案