題目列表(包括答案和解析)
已知曲線的參數(shù)方程是(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,).
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)設(shè),令=,
則==,
∵,∴的取值范圍是[32,52]
現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.
設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件
則.
(1)這4個(gè)人中恰有2人去參加甲游戲的概率
(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故
所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.
(3)的所有可能取值為0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
隨機(jī)變量的數(shù)學(xué)期望.
某校從參加高三年級理科綜合物理考試的學(xué)生中隨機(jī)抽出名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段,…后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的
平均分;
(Ⅲ)若從名學(xué)生中隨機(jī)抽取人,抽到的學(xué)生成績在記分,在記分,
在記分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.
【解析】(1)中利用直方圖中面積和為1,可以求解得到分?jǐn)?shù)在內(nèi)的頻率為
(2)中結(jié)合平均值可以得到平均分為:
(3)中用表示抽取結(jié)束后的總記分x, 學(xué)生成績在的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。
(Ⅰ)設(shè)分?jǐn)?shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分
(求解頻率3分,畫圖1分)
(Ⅱ)平均分為:……7分
(Ⅲ)學(xué)生成績在的有人,在的有人,
在的有人.并且的可能取值是. ………8分
則;; ;
;.(每個(gè)1分)
所以的分布列為
0 |
1 |
2 |
3 |
4 |
|
…………………13分
已知數(shù)列的通項(xiàng)公式,
,試通過計(jì)算的值,推測出的值。
【解析】本試題主要考查了數(shù)列通項(xiàng)公式的運(yùn)用和歸納猜想思想的運(yùn)用。由的通項(xiàng)公式得到,,并根據(jù)結(jié)果可猜想。
解:……………………2分
…………4分
…………6分
由此猜想,
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點(diǎn)H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com