14.(坐標(biāo)系與參數(shù)方程選做題)自極點向直線做垂線.垂足為.則直線的極坐標(biāo)方程是 . 查看更多

 

題目列表(包括答案和解析)

選做題 
(1)已知a,b∈R,若M=所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實數(shù)a,b,并求M的逆矩陣.
(2)已知直線l的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-).
(Ⅰ)求直線l的傾斜角;
(Ⅱ)若直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

選做題 
(1)已知a,b∈R,若M=
-1a
b3
所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實數(shù)a,b,并求M的逆矩陣.
(2)已知直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
).
(Ⅰ)求直線l的傾斜角;
(Ⅱ)若直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計20分,
解答時應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=,矩陣A屬于特征值λ1=-1的一個特征向量為,屬于特征值λ2=4的一個特征向量為.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.點
P為曲線C上的動點,求點P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求的最小值.

查看答案和解析>>

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計20分,
解答時應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個特征向量為α1=
1
-1
,屬于特征值λ2=4的一個特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點
P為曲線C上的動點,求點P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

一、選擇題:本大題每小題5分,滿分50分.

1

2

3

4

5

6

7

8

9

10

C

A

A

C

B

A

B

D

D

B

二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計算前一題的得分.

11.(2,+∞)     12.    13. 4      14.     15. 9

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程或演算步驟.

16.(本小題滿分12分)

解:(Ⅰ)∵ ,   ………………1分

  ………………4分

又 ∵  ,  ∴    …………………5分

(Ⅱ)由,…………………7分

   …………………………9分

由正弦定理 , 得 ……………………12分

17.(本小題滿分13分)

證明: (1) ∵ 三棱柱為直三棱柱,

         ∴  平面, ∴,

     ∵  , , ,

       ∴ ,

∴   , 又 ,

   ∴ 平面

∴      ……………………………………7分

   (2) 令的交點為, 連結(jié).

       ∵  的中點, 的中點, ∴ .

       又 ∵平面, 平面,

      ∴∥平面.    ………………………13分

18.(本小題滿分13分)

解: (1) 由題意得  , 即 ,…………………1分

        當(dāng)時 , ,…………4分

         當(dāng)時, , ………………5分

         ∴  , ……………………6分

     (2) 由(1)得,…………………8分

           ∴ 

                   . ……………………11分

          因此,使得成立的必須且只需滿足, 即,

故滿足要求的的最小正整數(shù)………………13分

19.(本小題滿分14分)

解: (1)設(shè)圓的圓心為,

依題意圓的半徑     ……………… 2分

∵ 圓軸上截得的弦的長為.

  

故    ………………………… 4分

 ∴   

    ∴  圓的圓心的軌跡方程為 ………………… 6分

(2)    ∵   ,  ∴   ……………………… 9分

令圓的圓心為, 則有 () ,…………… 10分

又  ∵   …………………… 11分

∴    ……………………… 12分

∴       ……………………… 13分

∴   圓的方程為   …………………… 14分

21.(本小題滿分14分)

解:(Ⅰ)由已知

解得,,   …………………2分

∴   ,     ∴     …………4分

∴  . ……………………5分

   (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

從而在區(qū)間上恒成立,…………………8分

令函數(shù),

則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

的取值范圍為…………………………10分

   (Ⅲ)由,得

∵       ∴,………………11分

設(shè)方程的兩根為,則,,

∵  ,  ∴  ,    ∴,

∵  ,  ∴  ,

      ∴  ……………14分

21.(本小題滿分14分)

解:  (Ⅰ)解:當(dāng)時,,,……………1分

,則.…………………3分

所以,曲線在點處的切線方程為,

.……………4分

(Ⅱ)解:.…………6分

由于,以下分兩種情況討論.

(1)當(dāng)時,令,得到,

當(dāng)變化時,的變化情況如下表:

0

0

極小值

極大值

所以在區(qū)間,內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù)

故函數(shù)在點處取得極小值,且,

函數(shù)在點處取得極大值,且.…………………10分

(2)當(dāng)時,令,得到

當(dāng)變化時,的變化情況如下表:

0

0

極大值

極小值

所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且.………………14分

 

 

 


同步練習(xí)冊答案