題目列表(包括答案和解析)
若雙曲線的離心率為2,則雙曲線的離心率為( )
A. B. C.2 D.
若雙曲線的離心率為2,則雙曲線的離心率為( )
A. | B. | C.2 | D. |
A. | B. | C.2 | D. |
若雙曲線的離心率為2,則等于( )
A. | B. | C. | D.1 |
A. | B. | C. | D.1 |
一.選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
A
A
B
D
A
D
D
A
B
A
二.填空題
13. .; 14. ; 15. 15; 16. ,可以填寫(xiě)任意實(shí)數(shù)
三、解答題
17.(Ⅰ)
(Ⅱ)
由得,從而,即 .所以,函數(shù)與軸交點(diǎn)的橫坐標(biāo)為. 12分
18.由圖可知,參加活動(dòng)1次、2次和3次的學(xué)生人數(shù)分別為5、25和20.
(I)該班學(xué)生參加活動(dòng)的人均次數(shù)為=. 3分
(II)從該班中任選兩名學(xué)生,他們參加活動(dòng)次數(shù)恰好相等的概率為. 6分
(III)從該班中任選兩名學(xué)生,記“這兩人中一人參加1次活動(dòng),另一人參加2次活動(dòng)”為事件,“這兩人中一人參加2次活動(dòng),另一人參加3次活動(dòng)”為事件,“這兩人中一人參加1次活動(dòng),另一人參加3次活動(dòng)”為事件.易知
; 8分
. 10分
的分布列:
0
1
2
的數(shù)學(xué)期望:. 12分
19.(Ⅰ)∵AD=2AB=2,E是AD的中點(diǎn),
∴△BAE,△CDE是等腰直角三角形,
易知,∠BEC=90°,即BE⊥EC
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′ 6分
(Ⅱ)法一:設(shè)M是線段EC的中點(diǎn),過(guò)M作MF⊥BC
垂足為F,連接D′M,D′F,則D′M⊥EC
∵平面D′EC⊥平面BEC,∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,
由三垂線定理得:D′F⊥BC,∴∠D′FM是二面D′―BC―E的平面角.
在Rt△D′MF中,!,
即二面角D′―BC―E的正切值為. 12分
法二:如圖,以EB,EC為x軸,y軸,過(guò)E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系,則
設(shè)平面BEC的法向量為;平面D′BC的法向量為
由.取
∴。
∴二面角D′―BC―E的的正切值為.
20. (Ⅰ)設(shè)C方程為,則b = 1.
∴橢圓C的方程為 …………………………………………………6分
(Ⅱ)假設(shè)存在直線,使得點(diǎn)是的垂心.易知直線的斜率為,從而直線的斜率為1.設(shè)直線的方程為,代如橢圓的方程,并整理可得.設(shè),則,.于是
解之得或.
當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意.當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意. 所以,當(dāng)且僅當(dāng)直線的方程為時(shí), 點(diǎn)是的垂心. 12分
21. (Ⅰ)注意到當(dāng)時(shí), 直線是拋物線的對(duì)稱(chēng)軸,分以下幾種情況討論.
(1) 當(dāng)a>0時(shí),函數(shù)y=, 的圖象是開(kāi)口向上的拋物線的一段,
由<0知在上單調(diào)遞增,∴.
(2)當(dāng)a=0時(shí),, ,∴. 3分
(3)當(dāng)a<0時(shí),函數(shù)y=, 的圖象是開(kāi)口向下的拋物線的一段,
若,即則 4分
若,即,則 5分
若,即,則. 6分
綜上有 7分
(Ⅱ)當(dāng)時(shí),,所以, g(a)在上單調(diào)遞增,于是由g(a)的不減性知等價(jià)于或
解之得或.所以,的取值范圍為. 12分
22.(Ⅰ)對(duì)一切有,即 , () 4分
由及兩式相減,得:
∴是等差數(shù)列,且, . 8分
說(shuō)明:本小題也可以運(yùn)用先猜后證(數(shù)學(xué)歸納法)的方法求解.給分時(shí),猜想正確得3分,證明給5分.
(Ⅱ) 由,知,因此,只需證明. 10分
當(dāng)或時(shí),結(jié)論顯然成立.當(dāng)時(shí),
所以,原不等式成立. 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com