(Ⅲ)解:可能的取值為.由得.. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問(wèn):過(guò)點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問(wèn):過(guò)點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問(wèn):過(guò)點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說(shuō)明理由.

查看答案和解析>>

(1)若某個(gè)似周期函數(shù)滿足且圖像關(guān)于直線對(duì)稱.求證:函數(shù)是偶函數(shù);

(2)當(dāng)時(shí),某個(gè)似周期函數(shù)在時(shí)的解析式為,求函數(shù),的解析式;

(3)對(duì)于確定的時(shí),,試研究似周期函數(shù)函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

為了解某班學(xué)生喜愛(ài)打羽毛球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

 

喜愛(ài)打羽毛球

不喜愛(ài)打羽毛球

合計(jì)

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中隨機(jī)抽取1人抽到不喜愛(ài)打羽毛球的學(xué)生的概率

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99.5%的把握認(rèn)為喜愛(ài)打羽毛球與性別有關(guān)?說(shuō)明你的理由;

(3)已知喜愛(ài)打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進(jìn)行其他方面的調(diào)查,求女生不全被選中的概率.下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(參考公式:其中.)

【解析】第一問(wèn)利用數(shù)據(jù)寫出列聯(lián)表

第二問(wèn)利用公式計(jì)算的得到結(jié)論。

第三問(wèn)中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

, 

基本事件的總數(shù)為8

表示“不全被選中”這一事件,則其對(duì)立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對(duì)立事件的概率公式得

解:(1) 列聯(lián)表補(bǔ)充如下:

 

 

喜愛(ài)打羽毛球

不喜愛(ài)打羽毛球

合計(jì)

男生

20

25

女生

10

15

25

合計(jì)

30

20

50

(2)∵

∴有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)

(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

, ,

基本事件的總數(shù)為8,

表示“不全被選中”這一事件,則其對(duì)立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對(duì)立事件的概率公式得.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案