8.已知是定義在R上的奇函數(shù).且為偶函數(shù).對(duì)于函數(shù)有下列幾種描述 查看更多

 

題目列表(包括答案和解析)

已知是定義在R上的奇函數(shù),且為偶函數(shù),對(duì)于函數(shù)有下列幾種描述

       ①是周期函數(shù)      ②是它的一條對(duì)稱(chēng)軸

       ③是它圖象的一個(gè)對(duì)稱(chēng)中心  ④當(dāng)時(shí),它一定取最大值

    其中描述正確的是                            (    )

       A.①② B.①③ C.②④ D.②③

查看答案和解析>>

已知是定義在R上的奇函數(shù),且為偶函數(shù),對(duì)于函數(shù)有下列幾種描述
是周期函數(shù)                          ②是它的一條對(duì)稱(chēng)軸
是它圖象的一個(gè)對(duì)稱(chēng)中心        ④當(dāng)時(shí),它一定取最大值
其中描述正確的是                                                                                          (   )
A.①②B.①③C.②④D.②③

查看答案和解析>>

6、已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R,f(x)滿(mǎn)足關(guān)系式:f(a•b)=bf(a)+af(b),則f(x)的奇偶性為(  )

查看答案和解析>>

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R都滿(mǎn)足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判斷的奇偶性,并證明你的結(jié)論;
(3)若f(2)=2,un=
f(2n)2n
(n∈N*)
,求證數(shù)列{un}是等差數(shù)列,并求{un}的通項(xiàng)公式.

查看答案和解析>>

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對(duì)稱(chēng)軸;③(-π,0)是它圖象的一個(gè)對(duì)稱(chēng)中心;
④當(dāng)x=
π
2
時(shí),它一定取最大值;其中描述正確的是
 

查看答案和解析>>

一、選擇題

1.C 解析:關(guān)于y軸的對(duì)稱(chēng)圖形,可得

圖象,再向右平移一個(gè)單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項(xiàng)的和為21可得q2+q-6=0,各項(xiàng)都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對(duì)應(yīng)1,x可對(duì)應(yīng)±1,y值對(duì)應(yīng)4,x可對(duì)應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿(mǎn)足條件的函數(shù),一一驗(yàn)證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關(guān)知識(shí)可知

12.答案:

解析:由題可知 ,故定義域?yàn)?sub>

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當(dāng)時(shí),

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱(chēng).

    當(dāng),

    則,

    ∴

    當(dāng)

    則,

   ∴

    綜上所述,對(duì)于,∴函數(shù)是偶函數(shù).

(Ⅱ)當(dāng)x>0時(shí),,

設(shè)

當(dāng)

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當(dāng);

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過(guò)點(diǎn)A(0,1)、B(,1)

  ∴b=c

∵當(dāng)

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點(diǎn)向左平移個(gè)單位得到的圖象

②由的圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到

的圖象

③由的圖象上所有點(diǎn)向下平移一個(gè)單位,得到

的圖象

17.(1)證明:由題設(shè),得

又a1-1=1,

所以數(shù)列{an-n}是首項(xiàng)為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項(xiàng)公式為

所以數(shù)列{an}的前n項(xiàng)和

18.分析:求停車(chē)場(chǎng)面積,需建立長(zhǎng)方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長(zhǎng)方形PQCR的一邊長(zhǎng)為x(不妨設(shè)PR=x),則另一邊長(zhǎng),

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問(wèn)題就容易得多,于是可求解如下;

解:延長(zhǎng)RP交AB于M,設(shè)∠PAB=,則

AM=90

<form id="ts7bz"></form>
<sup id="ts7bz"></sup>
      <strong id="ts7bz"></strong>

             

      設(shè),   ∵

      ∴當(dāng),SPQCR有最大值

      答:長(zhǎng)方形停車(chē)場(chǎng)PQCR面積的最大值為平方米.

      19.解:(Ⅰ)【方法一】由,

      依題設(shè)可知,△=(b+1)24c=0.

      .

      【方法二】依題設(shè)可知

      為切點(diǎn)橫坐標(biāo),

      于是,化簡(jiǎn)得

      同法一得

      (Ⅱ)由

      可得

      依題設(shè)欲使函數(shù)內(nèi)有極值點(diǎn),

      則須滿(mǎn)足

      亦即 ,

      故存在常數(shù),使得函數(shù)內(nèi)有極值點(diǎn).

      (注:若,則應(yīng)扣1分. )

      20.解:(Ⅰ)設(shè)函數(shù)

         (Ⅱ)由(Ⅰ)可知

      可知使恒成立的常數(shù)k=8.

      (Ⅲ)由(Ⅱ)知 

      可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

      即以為首項(xiàng),8為公比的等比數(shù)列. 則 

      .


      同步練習(xí)冊(cè)答案