.因此.在求軌跡時.一定要完整的.細致地.周密地分析問題.這樣.才能保證所求軌跡的純粹性和完備性.③防止以偏概全的錯誤以偏概全是指思考不全面.遺漏特殊情況.致使解答不完全.不能給出問題的全部答案.從而表現(xiàn)出思維的不嚴密性. 查看更多

 

題目列表(包括答案和解析)

冪指函數(shù)y=[f(x)]g(x)在求導時,可運用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得lny=g(x)•lnf(x),兩邊同時求導得
y/
y
=g/(x)lnf(x)+g(x)
f/(x)
f(x)
,于是y′=[f(x)]g(x)[g/(x)lnf(x)+g(x)
f/(x)
f(x)
]
,運用此方法可以探求得知y=x
1
x
的一個單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

我們把形如y=f(x
)
φ(x)
 
的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對法數(shù):在函數(shù)解析式兩邊求對數(shù)得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,兩邊對x求導數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運用此方法可以求得函數(shù)y=
x
x
 
(x>0)
在(1,1)處的切線方程是
y=x
y=x

查看答案和解析>>

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得lny=φ(x)lnf(x),兩邊求導數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運用此方法可以探求得函數(shù)y=x
1
x
的一個單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對法數(shù):在函數(shù)解析式兩邊求對數(shù)得,兩邊對x求導數(shù),得于是,運用此方法可以求得函數(shù)在(1,1)處的切線方程是  ▲ 

 

查看答案和解析>>

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對數(shù)法:在函數(shù)解析式兩邊取對數(shù)得,兩邊對x求導數(shù),得于是,運用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>


同步練習冊答案