又依題意 查看更多

 

題目列表(包括答案和解析)

解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

解答題:解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟

過(guò)點(diǎn)P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點(diǎn)為Q1,設(shè)點(diǎn)Q1在x軸上的投影為P1(即過(guò)點(diǎn)Q1作x軸的垂線,垂足為P1),又過(guò)點(diǎn)P1作曲線C的切線,切點(diǎn)為Q2,設(shè)點(diǎn)Q2在x軸上的投影為P2,…,依次下去,得到一系列點(diǎn)Q1,Q2,Q3,…,Qn,…,設(shè)點(diǎn)Qn的橫坐標(biāo)為an,n∈N*

(1)

求數(shù)列{an}的通項(xiàng)公式;

(2)

比較an的大小,并證明你的結(jié)論;

(3)

設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:對(duì)任意的正整數(shù)n均有≤Sn<2.

查看答案和解析>>

解答題

已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b∈N+,且a1<b1<a2<b2<a3

(1)

a的值;

(2)

若對(duì)于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;

(3)

在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,Tn是{an}的前n項(xiàng)和,求證:(n∈N+).

查看答案和解析>>

(本小題滿分14分)

已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

(Ⅰ)  a的值;

(Ⅱ) 若對(duì)于任意,總存在,使,求b的值;

(Ⅲ) 在(Ⅱ)中,記是所有中滿足, 的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

 

查看答案和解析>>

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來(lái)源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>


同步練習(xí)冊(cè)答案