即所求射影的方程為 (3) 推理的訓(xùn)練數(shù)學(xué)推理是由已知的數(shù)學(xué)命題得出新命題的基本思維形式.它是數(shù)學(xué)求解的核心.以已知的真實(shí)數(shù)學(xué)命題.即定義.公理.定理.性質(zhì)等為依據(jù).選擇恰當(dāng)?shù)慕忸}方法.達(dá)到解題目標(biāo).得出結(jié)論的一系列推理過程.在推理過程中.必須注意所使用的命題之間的相互關(guān)系(充分性.必要性.充要性等).做到思考縝密.推理嚴(yán)密. 查看更多

 

題目列表(包括答案和解析)

求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>

已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

【解析】(1)中利用點(diǎn)F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

已知x,y∈R+且x+y=4,求
1
x
+
2
y
的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
xy
①,即
1
xy
1
2
②,又因?yàn)?span id="0r4i4uo" class="MathJye">
1
x
+
2
y
≥2
2
xy
③,由②③得
1
x
+
2
y
2
④,即所求最小值為
2
⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因
 

查看答案和解析>>

已知x>0,y>0且x+y=4,求的最小值.某學(xué)生給出如下解法:由x+y=4,得4≥2①,即②,又因?yàn)?SUB>≥2③,由②③得④,即所求最小值為⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因:__________.

查看答案和解析>>

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列,試寫出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說明理由.

【解析】第一問中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),

(ii) 當(dāng)時(shí),,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則,

則(i)當(dāng)時(shí),

 

查看答案和解析>>


同步練習(xí)冊(cè)答案