題目列表(包括答案和解析)
將函數(shù)的圖象按向量平移后,得到的圖象,則( )
A. B. C. D.
將函數(shù)的圖象按向量平移后,得到的圖象,則
A. B. C. D.
一、選擇題:
1.C 2.D 3.C 4.D 5.C 6.A 7.A 8.D 9.D 10.B
二、填空題:
11. 12. 13. 14.7 15. 16. 17.
18. 答案不惟一,如,或等 19. 60 20. 21.
22. 23. 24.
三、解答題:
25 解: (Ⅰ)因為,∴,則
∴
(Ⅱ)由,得,∴
則
由正弦定理,得,∴的面積為
26解:(Ⅰ)因為,,且,
所以
又,所以四邊形為平行四邊形,則
而,故點的位置滿足
(Ⅱ)證: 因為側(cè)面底面,,且,
所以,則
又,且,所以
而,所以
27解:(Ⅰ)因為,所以的面積為()
設(shè)正方形的邊長為,則由,得,
解得,則
所以,則
(Ⅱ)因為,所以
當(dāng)且僅當(dāng)時取等號,此時.所以當(dāng)長為時,有最小值1
28解:(Ⅰ)設(shè)圓心,則,解得
則圓的方程為,將點的坐標(biāo)代入得,故圓的方程為
(Ⅱ)設(shè),則,且
==,
所以的最小值為(可由線性規(guī)劃或三角代換求得)
(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),
,由,
得
因為點的橫坐標(biāo)一定是該方程的解,故可得
同理,,
所以=
所以,直線和一定平行
29解:(Ⅰ)因為
由;由,
所以在上遞增,在上遞減
欲在上為單調(diào)函數(shù),則
(Ⅱ)證:因為在上遞增,在上遞減,
所以在處取得極小值
又,所以在上的最小值為
從而當(dāng)時,,即
(Ⅲ)證:因為,所以即為,
令,從而問題轉(zhuǎn)化為證明方程=0
在上有解,并討論解的個數(shù)
因為www.tesoon.com,,
所以 ①當(dāng)時,,
所以在上有解,且只有一解
②當(dāng)時,,但由于,
所以在上有解,且有兩解
③當(dāng)時,,所以在上有且只有一解;
當(dāng)時,,
所以在上也有且只有一解
綜上所述, 對于任意的,總存在,滿足,
且當(dāng)時,有唯一的適合題意;
當(dāng)時,有兩個適合題意
30解:(Ⅰ)由題意得,,所以=
(Ⅱ)證:令,,則=1
所以=(1),=(2),
(2)―(1),得―=,
化簡得(3)
(4),(4)―(3)得
在(3)中令,得,從而為等差數(shù)列
(Ⅲ)記,公差為,則=
則,
則,當(dāng)且僅當(dāng),即時等號成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com