某自來水廠的蓄水池有400噸水.水廠每小時可向蓄水池中注水60噸.同時蓄水池又向居民小區(qū)不間斷供水.小時內供水總量為噸.其中.(1) 從供水開始到第幾小時.蓄水池中的存水量最少?最少水量是多少噸?(2) 若蓄水池中水量少于80噸時.就會出現(xiàn)供水緊張現(xiàn)象.請問:在一天的24小時內.有幾小時出現(xiàn)供水緊張現(xiàn)象. 查看更多

 

題目列表(包括答案和解析)

某自來水廠的蓄水池中有400噸水,每天零點開始向居民供水,同時以每小時60噸的速度向池中注水,t小時內向居民供水總量為120
6t
(0≤t≤24)

(1)每天幾點鐘時,蓄水池中的存水量最少?
(2)如果池中存水量不多于80噸,就會出現(xiàn)供水緊張現(xiàn)象,那么一天中會有幾小時出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

某自來水廠的蓄水池中有400噸水,每天零點開始向居民供水,同時以每小時60噸的速度向池中注水,t小時內向居民供水總量為數(shù)學公式
(1)每天幾點鐘時,蓄水池中的存水量最少?
(2)如果池中存水量不多于80噸,就會出現(xiàn)供水緊張現(xiàn)象,那么一天中會有幾小時出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

某自來水廠的蓄水池中有400噸水,每天零點開始向居民供水,同時以每小時60噸的速度向池中注水,t小時內向居民供水總量為120
6t
(0≤t≤24)

(1)每天幾點鐘時,蓄水池中的存水量最少?
(2)如果池中存水量不多于80噸,就會出現(xiàn)供水緊張現(xiàn)象,那么一天中會有幾小時出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

某自來水廠的蓄水池中有400噸水,每天零點開始向居民供水,同時以每小時60噸的速度向池中注水,t小時內向居民供水總量為
(1)每天幾點鐘時,蓄水池中的存水量最少?
(2)如果池中存水量不多于80噸,就會出現(xiàn)供水緊張現(xiàn)象,那么一天中會有幾小時出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

某自來水廠的蓄水池中有400噸水,每天零點開始向居民供水,同時以每小時60噸的速度向池中注水,t小時內向居民供水總量為
(1)每天幾點鐘時,蓄水池中的存水量最少?
(2)如果池中存水量不多于80噸,就會出現(xiàn)供水緊張現(xiàn)象,那么一天中會有幾小時出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

         天津精通高考復讀學校數(shù)學教研組組長  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.;

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.,

11.,

12.,

,

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設抽取件產品作檢驗,則,  

    ,得:,即

   故至少應抽取8件產品才能滿足題意.  

16. 解:由題意得,,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵,,

.由已知,∴.

 ∵, ,

.

 ∴.        

 (2)     

當且僅當時,等號成立.此時,即的中點.于是由,知平面,是其交線,則過

 ∴就是與平面所成的角.由已知得,

 ∴, , .      

(3) 設三棱錐的內切球半徑為,則

,,

 ∴.     

18. (1)    

(2) ∵ ,

∴當時,      

∴當時,  

,,,.

的最大值為中的最大者.

∴ 當時,有最大值為

19.(1)解:∵函數(shù)的圖象過原點,

,

.      

又函數(shù)的圖象關于點成中心對稱,

, .

(2)解:由題意有  即,

 即,即.

 ∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴ ,,

(3)證明:當時,   

 故       

20. (1)解:∵,又,

    ∴.             又∵     

    ,且

.        

(2)解:由,,猜想

    (3)證明:用數(shù)學歸納法證明:

    ①當時,,猜想正確;

    ②假設時,猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當時,猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是 ,

4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:

              人的編號

              1

              2

              3

              4

              5

              座位號

              1

              2

              5

              3

              4

               

              人的編號

              1

              2

              3

              4

              5

              座位號

              1

              2

              4

              5

              3

               

                                                               

               

               

              所以,符合條件的共有10×2=20種。

              5. ,又,所以

              ,且,所以

              6.略

              7.略

              8. 密文shxc中的s對應的數(shù)字為19,按照變換公式:

              ,原文對應的數(shù)字是12,對應的字母是;

              密文shxc中的h對應的數(shù)字為8,按照變換公式:

              ,原文對應的數(shù)字是15,對應的字母是;

              二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

              提示:

              9.  ,,

              10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

                又,所以

              11. 特殊值法。取通徑,則,

              。

              12.因,,所以同解于

              所以。

              13.略 。

               

              14、(1)如圖:∵

              ∴∠1=∠2=∠3=∠P+∠PFD          

              =∠FEO+∠EFO

              ∴∠FEO=∠P,可證△OEF∽△DPF

              即有,又根據(jù)相交弦定理DF?EF=BF?AF

              可推出,從而

              ∴PF=3

              (2) ∵PFQF,  ∴  ∴

              (3)略。

              三、15.解:(1)  依題知,得  

              文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹洳簧普叨闹。精通內部學員使用么老師答疑電話
13702071025
 所以

              (2) 由(1)得

                  

              ∴            

              的值域為

               

              16.解:設飛機A能安全飛行的概率為,飛機B能安全飛行的概率為,則

                所以

              時,,;

              時,,,;

              時,,,;

              故當時,飛機A安全;當時,飛機A與飛機B一樣安全;當時,飛機B安全。

               

              17.(1) 證明:以D為坐標原點,DA所在的直線x

              軸,建立空間直角坐標系如圖。

              ,則

              ,,

              ,

              ,所以

                                  即  ,也就是

              ,所以 ,即。

              (2)解:方法1、找出二面角,再計算。

               

              方法2、由(1)得:(當且僅當取等號)

              分別為的中點,于是 ,

              ,所以

              是平面的一個法向量,則

                也就是

              易知是平面的一個法向量,

                                 

              18.(1) 證明:依題知得:

              整理,得

               所以   即 

              故 數(shù)列是等差數(shù)列。

              (2) 由(1)得   即 ()

                所以

               =

              =

               

              19.解:(1) 依題知得

              欲使函數(shù)是增函數(shù),僅須

              同步練習冊答案