本題共有2個(gè)小題.第1小題滿分6分.第2小題滿分8分.在直三棱柱中.. (1)求異面直線與所成的角的大小,(2)若與平面S所成角為.求三棱錐的體積. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分7分,第2小題滿分7分.

已知△的周長(zhǎng)為,且

 。1)求邊長(zhǎng)的值;

  (2)若(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分6分.

已知函數(shù), .

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域.

查看答案和解析>>

(本題滿分14分)本題共有2個(gè)小題,每小題滿分各7分.

如圖,在四棱錐中,底面為直角梯形,,垂直于底面,,分別為的中點(diǎn).                                                

(1)求證:;

(2)求與平面所成的角.

查看答案和解析>>

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.

有時(shí)可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).

(1)       證明:當(dāng)時(shí),掌握程度的增加量總是下降;

(2)       根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

查看答案和解析>>

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分6分.

已知函數(shù).

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域.

查看答案和解析>>

一、(第1題至笫12題)

1. 4   2. 2   3.    4.    5. 3    6.π    7.

8. 5   9. 0   10.   11.-1<b<1   12. 4

二、(第13題至笫16題)

13. C    14. A    15. A    16. D

 

1、已知,集合,若, 則實(shí)數(shù)。

2、已知兩條直線若,,則2.

3、若函數(shù)=(>0,且≠1)的反函數(shù)的圖象過(guò)點(diǎn)(2,-1),則原函數(shù)的圖象過(guò)點(diǎn)(-1,2),∴ ,=.

4、計(jì)算:。

5、若復(fù)數(shù)滿足(為虛數(shù)單位)為純虛數(shù),其中,則m=2,z=3i,。

6、函數(shù)=sin2x,它的最小正周期是π。

7、已知雙曲線中心在原點(diǎn),一個(gè)頂點(diǎn)的坐標(biāo)為,則焦點(diǎn)在x軸上,且a=3,焦距與虛軸長(zhǎng)之比為,即,解得,則雙曲線的標(biāo)準(zhǔn)方程是.

8、方程的解滿足,解得x=5.

9、已知實(shí)數(shù)滿足,在坐標(biāo)系中畫(huà)出可行域,得三個(gè)交點(diǎn)為A(3,0)、B(5,0)、C(1,2),則的最大值是0.

10、在一個(gè)小組中有8名女同學(xué)和4名男同學(xué),從中任意地挑選2名同學(xué)擔(dān)任交通安全宣傳志愿者,那么選到的兩名都是女同學(xué)的概率是.

11、曲線得|y|>1,∴ y>1或y<-1,曲線與直線沒(méi)有公共點(diǎn),則的取值范圍是[-1,1].

12、如圖,平面中兩條直線和相交于點(diǎn),對(duì)于平面上任意一點(diǎn),若分別是到直線和的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)是點(diǎn)的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)可以在兩條直線相交所成的四個(gè)區(qū)域內(nèi)各找到一個(gè),所以滿足條件的點(diǎn)的個(gè)數(shù)是4個(gè).

 

二、選擇題:

13. C    14. A    15. A    16. D

13.如圖,在平行四邊形ABCD中,根據(jù)向量的減法法則知,所以下列結(jié)論中錯(cuò)誤的是C.

14、如果,那么,∴ ,選A.

15、若空間中有兩條直線,若“這兩條直線為異面直線”,則“這兩條直線沒(méi)有公共點(diǎn)”;若 “這兩條直線沒(méi)有公共點(diǎn)”,則 “這兩條直線可能平行,可能為異面直線”;∴ “這兩條直線為異面直線”是“這兩條直線沒(méi)有公共點(diǎn)”的充分非必要條件,選A.

16、如果一條直線與一個(gè)平面垂直,那么,稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”.在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”,分情況討論:① 對(duì)于每一條棱,都可以與兩個(gè)側(cè)面構(gòu)成“正交線面對(duì)”,這樣的“正交線面對(duì)”有2×12=24個(gè);② 對(duì)于每一條面對(duì)角線,都可以與一個(gè)對(duì)角面構(gòu)成“正交線面對(duì)”,這樣的“正交線面對(duì)”有12個(gè);所以正方體中“正交線面對(duì)”共有36個(gè).選D.

 

三、(第17題至笫22題)

17.解:=

   由已知可得sin,

  ∴原式=.

18.解:連接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

     于是,BC=10.

     ∵,    ∴sin∠ACB=,

     ∵∠ACB<90°           ∴∠ACB=41°

∴乙船應(yīng)朝北偏東71°方向沿直線前往B處救援.

19.解:(1) ∵BC∥B1C1, ∴∠ACB為異面直線B1C1與AC所成角(或它的補(bǔ)角)

     ∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,

     ∴異面直線B1C1與AC所成角為45°.

     (2) ∵AA1⊥平面ABC,

∠ACA1是A1C與平面ABC所成的角, ∠ACA =45°.

∵∠ABC=90°, AB=BC=1, AC=,

∴AA1=.

∴三棱錐A1-ABC的體積V=S△ABC×AA1=.

20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.

     當(dāng)n≥2時(shí), an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an

       ∴=     an=2048()n-1.

     (2) ∵log2an=log2[2048()n-1]=12-n,

     ∴Tn=(-n2+23n).

     由Tn<-509,解待n>,而n是正整數(shù),于是,n≥46.

     ∴從第46項(xiàng)起Tn<-509.

21.解(1)由已知得橢圓的半長(zhǎng)軸a=2,半焦距c=,則半短軸b=1.

     又橢圓的焦點(diǎn)在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為

(2)設(shè)線段PA的中點(diǎn)為M(x,y) ,點(diǎn)P的坐標(biāo)是(x0,y0),

 

y0=2y-

由,點(diǎn)P在橢圓上,得,

∴線段PA中點(diǎn)M的軌跡方程是.

(3)當(dāng)直線BC垂直于x軸時(shí),BC=2,因此△ABC的面積S△ABC=1.

當(dāng)直線BC不垂直于x軸時(shí),說(shuō)該直線方程為y=kx,代入,

解得B(,),C(-,-),

則,又點(diǎn)A到直線BC的距離d=,

∴△ABC的面積S△ABC=

于是S△ABC=

由≥-1,得S△ABC≤,其中,當(dāng)k=-時(shí),等號(hào)成立.

∴S△ABC的最大值是.    

22.解(1) 由已知得=4, ∴b=4.

     (2) ∵c∈[1,4], ∴∈[1,2],

     于是,當(dāng)x=時(shí), 函數(shù)f(x)=x+取得最小值2.

f(1)-f(2)=,

當(dāng)1≤c≤2時(shí), 函數(shù)f(x)的最大值是f(2)=2+;

當(dāng)2≤c≤4時(shí), 函數(shù)f(x)的最大值是f(1)=1+c.

(3)設(shè)0<x1<x2,g(x2)-g(x1)=.

     當(dāng)<x1<x2時(shí), g(x2)>g(x1), 函數(shù)g(x)在[,+∞)上是增函數(shù);

     當(dāng)0<x1<x2<時(shí), g(x2)>g(x1), 函數(shù)g(x)在(0, ]上是減函數(shù).

   當(dāng)n是奇數(shù)時(shí),g(x)是奇函數(shù),

函數(shù)g(x) 在(-∞,-]上是增函數(shù), 在[-,0)上是減函數(shù).

   當(dāng)n是偶數(shù)時(shí), g(x)是偶函數(shù),

   函數(shù)g(x)在(-∞,-)上是減函數(shù), 在[-,0]上是增函數(shù).

 

 

 


同步練習(xí)冊(cè)答案