題目列表(包括答案和解析)
已知曲線上動點到定點與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;
(3)以曲線的左頂點為圓心作圓:,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.
【解析】第一問利用(1)過點作直線的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當時,取得最小值為.
計算得,,故,又點在圓上,代入圓的方程得到.
故圓T的方程為:
如圖,分別是橢圓:+=1()的左、右焦點,是橢圓的頂點,是直線與橢圓的另一個交點,=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40,求的值.
【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。
(Ⅱ)因△的面積為40,設,又面積公式,又直線,
又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。
1 |
4 |
1 |
2 |
已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當為鈍角時,求的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質(zhì)由得 所以橢圓方程可設為:,然后利用
得得
橢圓方程為
第二問中,當為鈍角時,, 得
所以 得
解:(Ⅰ)由得 所以橢圓方程可設為:
3分
得得
橢圓方程為 3分
(Ⅱ)當為鈍角時,, 得 3分
所以 得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com