題目列表(包括答案和解析)
如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對所有,恒成立,求實數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,
得
第三問
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時,可求得,命題成立; ……………2分
②假設(shè)當(dāng)時,命題成立,即有,……………………1分
則當(dāng)時,由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時,命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即
.……………2分
由題意,有. 所以,
|
一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.
(1)多少小時后,蓄水池存水量最少?
(2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?
【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸
第二問依題意, 解得:
解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分
依題意,…………………………………………4分
當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分
(2)依題意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com