11.連擲兩次骰子分別得到點(diǎn)數(shù)是m.n.則向量的夾角θ<90°的概率是 查看更多

 

題目列表(包括答案和解析)

連擲兩次骰子分別得到點(diǎn)數(shù)為m、n,則向量的夾角的概率是   

A.                      B.                        C.                        D.

查看答案和解析>>

連擲兩次骰子分別得到點(diǎn)數(shù)m、n,向量
a
=(m,n),
b
=(-1,1)若△ABC中
AB 
a
同向,
CB 
b
反向,則∠ABC是鈍角的概率是( 。
A.
7
12
B.
1
2
C.
5
12
D.
1
3

查看答案和解析>>

連擲兩次骰子分別得到點(diǎn)數(shù)m、n,則向量(m,n)與向量(-1,1)的夾角θ>90°的概率是

A.                   B.                 C.                   D.

查看答案和解析>>

連擲兩次骰子分別得到點(diǎn)數(shù)m、n,則向量a=(m,n)與向量b=(-1,1)的夾角θ>90°的概率是(  )

(A)  (B)  (C)  (D)

查看答案和解析>>

連擲兩次骰子分別得到點(diǎn)數(shù)m、n,向量=(m,n),=(-1,1)若△ABC中同向,反向,則∠ABC是鈍角的概率是( )
A.
B.
C.
D.

查看答案和解析>>

一、選擇題:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空題:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答題:

26解:(1),

,有,

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是,

              

代入得。          

27證明:(1)∵

                                        

(2)令中點(diǎn)為,中點(diǎn)為,連結(jié)

的中位線

         

又∵

   

為正

        

又∵,

∴四邊形為平行四邊形   

 

28解:(1)設(shè)米,,則

                                               

                                       

                                           

(2)                 

 

 

 此時(shí)                                            

(3)∵

,                         

當(dāng)時(shí),

上遞增                    

此時(shí)                                             

答:(1)

(2)當(dāng)的長(zhǎng)度是4米時(shí),矩形的面積最小,最小面積為24平方米

(3)當(dāng)的長(zhǎng)度是6米時(shí),矩形的面積最小,最小面積為27平方米。                            

29解:(1)①若直線的斜率不存在,即直線是,符合題意。 

②若直線斜率存在,設(shè)直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                           

所求直線方程是,                          

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                  

又直線垂直,由

為定值。

是定值,且為6。                          

30解:(1)由題意得,                            

,    ∴   

,∴

單調(diào)增函數(shù),                                         

對(duì)于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程為               

 令,,

 ∵,當(dāng)時(shí),

上為增函數(shù);

 時(shí),, 

上為減函數(shù),  

 當(dāng)時(shí),                    

,            

∴函數(shù)、在同一坐標(biāo)系的大致圖象如圖所示,

∴①當(dāng),即時(shí),方程無(wú)解。

②當(dāng),即時(shí),方程有一個(gè)根。

③當(dāng),即時(shí),方程有兩個(gè)根                                                                                                     

 


同步練習(xí)冊(cè)答案