(2)當?shù)拈L度是多少時.矩形的面積最小?并求最小面積, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,已知|AB|=3米,|AD|=2米.
(1)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?
(2)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

查看答案和解析>>

精英家教網(wǎng)如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,已知AB=3米,AD=2米.
(1)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?
(2)當AN的長度是多少時,矩形AMPN的面積最。坎⑶笞钚∶娣e;
(3)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

查看答案和解析>>

精英家教網(wǎng)如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點.已知AB=3米,AD=2米.
(I)設AN=x(單位:米),要使花壇AMPN的面積大于32平方米,求x的取值范圍;
(Ⅱ)若x∈[3,4)(單位:米),則當AM,AN的長度分別是多少時,花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B在AM上,D在AN上,對角線MN過C點,已知|AB|=3米,|AD|=2米,且受地理條件限制,|AN|長不超過8米,設AN=x.
(1)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?
(2)若|AN|∈[3,4)(單位:米),則當AM、AN的長度是多少時,矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB上,N在AD上,且對角線MN過C點,已知AB=4米,AD=3米,設AN的長為x米(x>3).
(1)要使矩形AMPN的面積大于54平方米,則AN的長應在什么范圍內(nèi)?
(2)求當AM、AN的長度是多少時,矩形花壇AMPN的面積最?并求出最小面積.

查看答案和解析>>

一、選擇題:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空題:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答題:

26解:(1)

,有

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是

              

代入得。          

27證明:(1)∵

                                        

(2)令中點為,中點為,連結(jié)、

的中位線

         

又∵

   

為正

        

又∵

∴四邊形為平行四邊形   

 

28解:(1)設米,,則

                                               

                                       

                                           

(2)                 

 

 

 此時                                            

(3)∵

                         

時,

上遞增                    

此時                                             

答:(1)

(2)當的長度是4米時,矩形的面積最小,最小面積為24平方米;

(3)當的長度是6米時,矩形的面積最小,最小面積為27平方米。                            

29解:(1)①若直線的斜率不存在,即直線是,符合題意。 

②若直線斜率存在,設直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                           

所求直線方程是                          

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設直線方程為

                  

又直線垂直,由

為定值。

是定值,且為6。                          

30解:(1)由題意得,                            

,    ∴   

,∴

單調(diào)增函數(shù),                                         

對于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程為               

 令,

 ∵,當時,,

上為增函數(shù);

 時,, 

上為減函數(shù),  

 當時,                    

,            

∴函數(shù)、在同一坐標系的大致圖象如圖所示,

∴①當,即時,方程無解。

②當,即時,方程有一個根。

③當,即時,方程有兩個根                                                                                                     

 


同步練習冊答案