題目列表(包括答案和解析)
過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。
已知拋物線,為坐標(biāo)原點.
(Ⅰ)過點作兩相互垂直的弦,設(shè)的橫坐標(biāo)為,用表示△的面積,并求△面積的最小值;
(Ⅱ)過拋物線上一點引圓的兩條切線,分別交拋物線于點, 連接,求直線的斜率.
過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。
一、選擇題
DDDCC CDAAB
二、填空題
11、 12、 13、 14、17 0 15、②③
三、解答題
16、⑴
17、(1),其定義域為.
令得.……………………………………………………2′
當(dāng)時,當(dāng)時,故當(dāng)且僅當(dāng)時,. 6′
(2)
由(1)知≤, ≥…………………………9′
又
故…………………………………………12′′18、(1)符合二項分布
0
1
2
3
4
5
6
……6′
(2)可取15,16,18.
表示勝5場負(fù)1場,;………………………………7′
表示勝5場平1場,;………………………………8′
表示6場全勝,.……………………………………………9′
∴.………………………………………………………………12(
19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由題意可知、、………2′
令 的坐標(biāo)為
,
而,
是與的公垂線…………………………………………………………4′
(2)令面的法向量而,
令,則,即而面的法向量
……6′ ∴二面角的大小為.……8′
(3) 面的法向量為 到面的距離為
即到面的距離為.…………12′
20、解:(1)假設(shè)存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分
(2)∵當(dāng)時,
又,,則
∴與相反,而,則.以此類推有:
,;……7分
(3)∵當(dāng)時,,,則
∴ …9分
∴ ()……10分
∴.……12分
21、解(1)設(shè)則
①②
①-②得
……………………2′
直線的方程是 整理得………………4′
(2)聯(lián)立解得
設(shè)
則且的方程為與聯(lián)立消去,整理得
………………………………6′
又
…………………………………………8′
(3)直線的方程為,代入,得即
………………………………………………10′
三點共線,三點共線,且在拋物線的內(nèi)部。
令為、為
故由可推得
而
同理可得:
而得………………………………14′
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com