題目列表(包括答案和解析)
(本小題滿分12分)如圖,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分別為棱AB、BC的中點(diǎn), M為棱AA1上的點(diǎn),二面角M―DE―A為30°.
(1)求MA的長;w.w.w.k.s.5.u.c.o.m
(2)求點(diǎn)C到平面MDE的距離。
(本小題滿分12分)某校高2010級數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。
(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙兩人不相鄰的站法有多少種?
(3)求甲不站最左端且乙不站最右端的站法有多少種 ?
(本小題滿分12分)
某廠有一面舊墻長14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費(fèi)用最省?(1)、(2)兩種方案哪個更好?
(本小題滿分12分)
已知a,b是正常數(shù), a≠b, x,y(0,+∞).
(1)求證:≥,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m
(2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.
(本小題滿分12分)
已知a=(1,2), b=(-2,1),x=a+b,y=-ka+b (kR).
(1)若t=1,且x∥y,求k的值;
(2)若tR +,x?y=5,求證k≥1.
一、選擇題(本大題12小題,每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
D
D
A
B
C
C
C
A
D
A
二、填空題(本大題共4小題,每小題4分,共16分)
13.4949; 14.[] 15.②④; 16.x<0或x>2
三、解答題(本大題共6小題共74分)
17.解(1)設(shè),由,有x+y=-1 ①……………1分
與的夾角為,有,
∴,則x2+y2=1 ②……………2分
由①②解得,∴(-1,0)或(0,-1) ……………4分
(2)由2B=A+C知B= ……………5分
由垂直知(0,-1),則
……………6分
∴
=1+ ……………8分
∵0<A<
∴-1≤cos(2A+)<
即 ………………10分
故 ………………12分
18.解:(1)過點(diǎn)A作AF⊥CB交CB延長線于點(diǎn)F,連結(jié)EF,則AF⊥平面BCC1B1,∠AEF為所求直線AE與平面BCC1B1所成的角. …………………2分
在Rt△AEF中,AF=∠AEF=
故直線AE與平面BCC1B1所成的角為arctan …………………6分
(2)以O為原點(diǎn),OB為x軸,OC為y軸,建立空間直角坐標(biāo)系O-xyz,則
A (0,-),E (0,),D1 (-1,0,2)
…………………8分
設(shè)平面AED1的一個法向量則
取z=2,得=(3,-1,2)
∴點(diǎn)O到平面AED1的距離為d= …………………12分
19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,
∴a1?a4,a7…,a3n-2是首項為1,公差為1的等差數(shù)列,
∴Pn= …………………4分
由
∴b2,b5,b8, …b3n-1是以1為首項,公比為-1的等比數(shù)列
∴Qn= …………………8分
(2)對于Pn≤100Qn
當(dāng)n為偶數(shù)時,不等式顯然不成立;
當(dāng)n為奇數(shù)時,,解得n=1,3,…,13.
所求之和為 ………………12分
20.解∵P(x=6)= ………………3分
P(x=7)= ………………6分
P(x=8)= ………………9分
∴P(x≥6)= ………………12分
答:線路信息暢通的概率為
21.解:因為f′(x)=3x2+6ax+b,由題設(shè)得
解得: ………………4分
∴當(dāng)時,f′(x)=3x2+6x+3=3(x+1)2≥0,于是f(x)不存在極值;
當(dāng)時,f′(x)=3x2+12x+9=3(x+1)(x+3),符合條件。 ………………6分
且f(1)=20, f(0)=4,于是由題設(shè)得:3x2+12x+9≤20m-8在區(qū)間[-4,3]上恒成立,又f′(x)=3x2+12x+9=3(x+2)2-3在區(qū)間 [-4,3]上的最大值為72.
∴,即實數(shù)m的取值范圍是.
22.(1)設(shè)M (x,y),則由且O是原點(diǎn)得
A (2,0),B (2,1),C (0,1),從而(x,y),
由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]
即(1-k)x2+2(k-1)x+y2=0為所求軌跡方程 ………………4分
①當(dāng)k=1時,y=0動點(diǎn)M的軌跡是一條直線
②當(dāng)k≠1時,(x-1)2+
k=0時,動點(diǎn)M軌跡是一個圓
k>1時,動點(diǎn)M軌跡是一條雙曲線;
0<k<1或k<0時軌跡是一個橢圓 . ………………6分
(2)當(dāng)k=時,動點(diǎn)M的軌跡方程為(x-1)2+2y2=1即y2=-(x-1)2
從而
又由(x-1)2+2y2=1 ∴0≤x≤2
∴當(dāng)x=時,的最大值為.
當(dāng)x=0時,的最大值為16.
∴的最大值為4,最小值為 …………………10分
(3)由由得
①當(dāng)0<k<1時,a2=1,b2=1-k,c2=k
∴e2=k ∴
②當(dāng)k<0時,e2=
∴k∈ …………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com