甲.乙.丙三人進(jìn)行射擊比賽.在一輪比賽中.甲.乙丙各射擊一發(fā)子彈.根據(jù)以往統(tǒng)計(jì)資料知.甲擊中9環(huán).10環(huán)的概率為0.3.0.2.乙中擊中9環(huán).10環(huán)的概率0.4.0.3.丙擊中9環(huán).10環(huán)的概率是0.6.0.4.設(shè)甲.乙.丙射擊相互獨(dú)立.求: (1)丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)的概率,(2)求在一輪比賽中.甲.乙擊中的環(huán)數(shù)都沒有超過丙擊中的環(huán)數(shù)的概率. 查看更多

 

題目列表(包括答案和解析)

甲,乙,丙三人進(jìn)行某項(xiàng)比賽,設(shè)某一局中三個(gè)人取勝的概率相等,比賽規(guī)定先勝三局者為整場(chǎng)比賽的優(yōu)勝者,若甲勝了第一,三局,乙勝了第二局,問丙成為整場(chǎng)比賽優(yōu)勝者的概率是多少?

查看答案和解析>>

設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒有平局.在一局比賽中,甲勝乙的概率為
3
5
,甲勝丙的概率為
3
4
,乙勝丙的概率為
2
3
.比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局?jǐn)?shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,設(shè)各局中雙方獲勝的概率均為
12
,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
( I)求第4局甲當(dāng)裁判的概率;
( II)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

甲、乙、丙三人進(jìn)行傳球練習(xí),共傳球三次,球首先從甲手中傳出.
(Ⅰ)試列舉出所有可能的傳球的方法;
(Ⅱ)求第3次球恰好傳回給甲的概率.

查看答案和解析>>

甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,設(shè)各局中雙方獲勝的概率均為
12
,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(I)求第4局甲當(dāng)裁判的概率;
(II)求前4局中乙恰好當(dāng)1次裁判概率.

查看答案和解析>>

一、

1.D      2.C       3.B       4.D      5.C       6.A      7.D      8.B       9.C       10.C

11.D     12.A

【解析】

5.解:,則.

6.解:線性規(guī)劃問題可先作出可行域(略),設(shè),則,可知在點(diǎn)(1,1)處取最小值,.

7.解:,由條件知曲線在點(diǎn)(0,1)處的切線斜率為,則.

8.解:如圖

      

正四棱錐中,取中點(diǎn),連接、,易知就是側(cè)面與底面所成角,面,則.

9.解:,展開式中含的項(xiàng)是,其系數(shù)是.

10.解:,其值域是.

 

11.解:,設(shè)離心率為,則,由知.

12.解:如圖

       書館

正四面體中,是中心,連,此四面體內(nèi)切球與外接球具有共同球心,必在上,并且等于內(nèi)切球半徑,等于外接球半徑.記面積為,則,從而

二、填空題

13..

解:,與共線.

14.120種.

       解:按要求分類相加,共有種,或使用間接法:種.

15..

       解:曲線 ①,化作標(biāo)準(zhǔn)形式為,表示橢圓,由于對(duì)稱性,取焦點(diǎn),過且傾角是135°的弦所在直線方程為:,即 ②,聯(lián)立式①與式②消去得:

,由弦長(zhǎng)公式得:.

16.充要條件①:底面是正三角形,頂點(diǎn)在底面的射影恰是底面的中心.

充要條件②:底面是正三角形,且三條側(cè)棱長(zhǎng)相等,

再如:底面是正三角形,且三個(gè)側(cè)面與底面所成角相等;底面是正三角形,且三條側(cè)棱與底面所成角相等;三條側(cè)棱長(zhǎng)相等,且三個(gè)側(cè)面與底面所成角相等;三個(gè)側(cè)面與底面所成角相等,三個(gè)側(cè)面兩兩所成二面角相等.

三、解答題

17.解:設(shè)等差數(shù)列的公差為、、成等比數(shù)列,即,

,得或.

       時(shí)是常數(shù)列,,前項(xiàng)和

       時(shí),的前項(xiàng)和

      

       或.

18.解:,則,,.

由正弦定理得:

       ,

       ,則

      

       .

19.解:已知甲擊中9環(huán)、10環(huán)的概率分別是0.3、0.2,則甲擊中8環(huán)及其以下環(huán)數(shù)的概率是0.5;乙擊中9環(huán)、10環(huán)的概率分別為0.4、0.3,則乙擊中8環(huán)及其以下環(huán)數(shù)的概率是0.3;丙擊中9環(huán)、10環(huán)的概率是0.6、0.4,0.6+0.4=1,則丙擊中8環(huán)及其以下環(huán)數(shù)是不可能事件.

       (1)記在一輪比賽中“丙擊中的環(huán)數(shù)不超過甲擊中的環(huán)數(shù)”為事件,包括“丙擊中9環(huán)且甲擊中9或10環(huán)”、“丙擊中10環(huán)且甲擊中10環(huán)”兩個(gè)互斥事件,則

       .

       (2)記在一輪比賽中,“甲擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件,“乙擊中的環(huán)數(shù)超過丙擊中的環(huán)數(shù)”為事件,則與相互獨(dú)立,且,.

       所以在一輪比賽中,甲、乙擊中的環(huán)數(shù)都沒有超過丙擊中的環(huán)數(shù)的概率為:

      

       .

20.(1)證:已知是正三棱柱,取中點(diǎn),中點(diǎn),連,,則、、兩兩垂直,以、、為、、軸建立空間直角坐標(biāo)系,又已知,

則.

,,則,又因與相交,故面.

(2)解:由(1)知,是面的一個(gè)法向量.

,設(shè)是面的一個(gè)法向量,則①,②,取,聯(lián)立式①與式②解得,則.

              二面角是銳二面角,記其大小為.則

              ,

二面角的大小,亦可用傳統(tǒng)方法解決(略).

21.解:.

       (1)在處取得極值,則.

       (2),

             

              恒成立,必有解.

              易知函數(shù)圖象(拋物線)對(duì)稱軸方程是.

              在上是增函數(shù),則時(shí)恒有,進(jìn)而必有(數(shù)形結(jié)合)

              或或,

              故的取值范圍是:.

22.解:(1)已知,求得線段的兩個(gè)三等分點(diǎn)、,直線過時(shí),,直線過時(shí),,故或.

             

(2)已知是橢圓短軸端點(diǎn)和焦點(diǎn),易求得橢圓方程是:,所在直線的方程為.

直線與橢圓相交于、,設(shè),,由直線與線段相交(交點(diǎn)不與、重合)知.

點(diǎn)在橢圓上,則,解得到直線的距離

,

點(diǎn)到直線的距離;

設(shè),則,由知,則:

,

當(dāng)即時(shí),取到最大值.

,0與中,0距更遠(yuǎn),當(dāng)且時(shí),

,

∴四邊形的面積,當(dāng)時(shí),.

 

 


同步練習(xí)冊(cè)答案