16.一個四棱錐的三視圖和直觀圖如圖所示.E為側(cè)棱PD的中點(diǎn).(1)求證:PB//平面AEC, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)如圖,在一個由矩形與正三角形組合而成的平面圖形中,現(xiàn)將正三角形沿折成四棱錐,使在平面內(nèi)的射影恰好在邊上.

 

 

(1)求證:平面⊥平面;

(2)求直線與平面所成角的正弦值.

 

查看答案和解析>>

 (本小題滿分14分)如圖,在一個由矩形與正三角形組合而成的平面圖形中,現(xiàn)將正三角形沿折成四棱錐,使在平面內(nèi)的射影恰好在邊上.

(1)求證:平面⊥平面;

(2)求直線與平面所成角的正弦值.

                              

查看答案和解析>>

 (本小題滿分14分)如圖,在一個由矩形與正三角形組合而成的平面圖形中,現(xiàn)將正三角形沿折成四棱錐,使在平面內(nèi)的射影恰好在邊上.

(1)求證:平面⊥平面

(2)求直線與平面所成角的正弦值.

                              

查看答案和解析>>

(本小題滿分14分)如圖,在一個由矩形與正三角形組合而成的平面圖形中,現(xiàn)將正三角形沿折成四棱錐,使在平面內(nèi)的射影恰好在邊上.


(1)求證:平面⊥平面
(2)求直線與平面所成角的正弦值.

第20題

 
                             

 

查看答案和解析>>

(本小題滿分14分)

如圖,在四棱錐中,底面是正方形,其他四個側(cè)面都是等邊三角形,的交點(diǎn)為,為側(cè)棱上一點(diǎn).

(Ⅰ)當(dāng)E為側(cè)棱SC的中點(diǎn)時,求證:SA∥平面BDE;

(Ⅱ)求證:平面BDE⊥平面SAC

 

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共70分.

1.6ec8aac122bd4f6e 2.2i 3.(6ec8aac122bd4f6e)或(6ec8aac122bd4f6e) 4.16  5.a(chǎn)≥-8     6.64       7.(1)(3)(4)  8.6    9.  10.6ec8aac122bd4f6e  11.1      12.6ec8aac122bd4f6e   13.(-∞,1)

14.6ec8aac122bd4f6e,提示:設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,故6ec8aac122bd4f6e為增函數(shù),由ab,有6ec8aac122bd4f6e,也可以考慮特例,如f(x)=x2

二、解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

15.(1)6ec8aac122bd4f6e                     

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                          5分

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                                 

6ec8aac122bd4f6e

6ec8aac122bd4f6e為等腰三角形.                                             8分

(2)由(I)知

6ec8aac122bd4f6e                        12分

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                                           14分

16.(1)由圖形可知該四棱錐和底面ABCD是菱形,且有一角為,邊長為2,

錐體高度為1。

設(shè)AC,BD和交點(diǎn)為O,連OE,OE為△DPB的中位線,

OE//PB,                                             3分

EO面EAC,PB面EAC內(nèi), PB//面AEC。          6分

(2)過O作OFPA垂足為F , 

在Rt△POA中,PO=1,AO=,PA=2,在Rt△POB中,PO=1,BO=1,PB=,   8分

過B作PA的垂線BF,垂足為F,連DF,由于△PAB≌△PAD,故DF⊥PA,DF∩BF=F,因此PA⊥面BDF.                                                  10分

在等腰三角形PAB中解得AF=,進(jìn)而得PF=               

即當(dāng)6ec8aac122bd4f6e時,PA面BDF,                       12分

此時F到平面BDC的距離FH=6ec8aac122bd4f6e

   6ec8aac122bd4f6e         14分

17.(1)6ec8aac122bd4f6e                     4分

橢圓方程為6ec8aac122bd4f6e                                7分

(2)6ec8aac122bd4f6e         10分

6ec8aac122bd4f6e=2       14分

所以P在DB延長線與橢圓交點(diǎn)處,Q在PA延長線與圓的交點(diǎn)處,得到最大值為6ec8aac122bd4f6e.  15分

18.(1)DM=,DN=6ec8aac122bd4f6e,MF=,EN=,                          4分

=EF=DM+DN-MF-EN=+6ec8aac122bd4f6e--

=6ec8aac122bd4f6e       (6ec8aac122bd4f6e)                                        7分

(2)“平板車要想順利通過直角走廊”即對任意角(6ec8aac122bd4f6e),平板車的長度不能超過,即平板車的長度6ec8aac122bd4f6e;記6ec8aac122bd4f6e 6ec8aac122bd4f6e,有6ec8aac122bd4f6e=6ec8aac122bd4f6e,

=6ec8aac122bd4f6e=6ec8aac122bd4f6e=,                                            10分

此后研究函數(shù)的最小值,方法很多;如換元(記6ec8aac122bd4f6e,則6ec8aac122bd4f6e)或直接求導(dǎo),以確定函數(shù)在6ec8aac122bd4f6e上的單調(diào)性;當(dāng)6ec8aac122bd4f6e時取得最小值6ec8aac122bd4f6e。                    15分

19. (1)點(diǎn)(n,)在直線y=x+上,∴=n+,即Sn=n2+n,

an=n+5.                                                                     3分

bn+2-2bn+1bn=0(nÎN*),∴bn+2bn+1 bn+1bn=…= b2b1

∴數(shù)列{bn}是等差數(shù)列,∵b3=11,它的前9項(xiàng)和為153,設(shè)公差為d,

則b1+2d=11,9b1+×d=153,解得b1=5,d=3.∴bn=3n+2.                  6分

(2)由(1)得,cn= = =(-),

Tn=b1+b2+b3+…+bn=(1-)+(-)+(-)+…+(-)

=(1-).                                                           9分

Tn=(1-)在nÎN*上是單調(diào)遞增的,∴Tn的最小值為T1=.

∵不等式Tn>對一切nÎN*都成立,∴<.∴k<19.∴最大正整數(shù)k的值為18.11分

(3) nÎN*,f(n)==

當(dāng)m為奇數(shù)時,m+15為偶數(shù);當(dāng)m為偶數(shù)時,m+15為奇數(shù).

若f(m+15)=5f(m)成立,則有3(m+15)+2=5(m+5)(m為奇數(shù))

或m+15+5=5(3m+2)(m為偶數(shù)).                                      13分

解得m=11.所以當(dāng)m=11時,f(m+15)=5f(m).                             16分

20.(1)6ec8aac122bd4f6e.                                       2分

   當(dāng)時,6ec8aac122bd4f6e,在6ec8aac122bd4f6e上單調(diào)遞增;                     3分

   當(dāng)時,6ec8aac122bd4f6e時,6ec8aac122bd4f6e,在上單調(diào)遞減;         

6ec8aac122bd4f6e時,6ec8aac122bd4f6e,在6ec8aac122bd4f6e上單調(diào)遞增.                 5分

綜上所述,當(dāng)時,的單調(diào)遞增區(qū)間為6ec8aac122bd4f6e;當(dāng)時,的單調(diào)遞增區(qū)間為6ec8aac122bd4f6e,單調(diào)遞減區(qū)間為.                                         6分

(2)充分性:a=1時,由(1)知,在x=1處有極小值也是最小值,

6ec8aac122bd4f6e。而在上單調(diào)遞減,在6ec8aac122bd4f6e上單調(diào)遞增,

6ec8aac122bd4f6e上由唯一的一個零點(diǎn)x=1.                               9分

必要性: =0在6ec8aac122bd4f6e上有唯一解,且a>0, 由(1)知,在x=a處有極小值也是最小值f(a), f(a)=0,即6ec8aac122bd4f6e

6ec8aac122bd4f6e, 6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e,在上單調(diào)遞增;當(dāng)a>1時,6ec8aac122bd4f6e,

6ec8aac122bd4f6e上單調(diào)遞減。6ec8aac122bd4f6e, =0只有唯一解a=1.

=0在6ec8aac122bd4f6e上有唯一解時必有a=1.                           12分

綜上:在a>0時, =0在6ec8aac122bd4f6e上有唯一解的充要條件是a=1.

(3)證明:∵1<x<2,∴6ec8aac122bd4f6e.

 令6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e,14分

由(1)知,當(dāng)a=1時,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e,∴F(x)在(1,2)上單調(diào)遞增,∴6ec8aac122bd4f6e,

6ec8aac122bd4f6e!6ec8aac122bd4f6e.             16分

 

附加題答案

1.解:如圖,連結(jié)OC,因6ec8aac122bd4f6e,因此6ec8aac122bd4f6e,由于6ec8aac122bd4f6e,

6ec8aac122bd4f6e所以6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e;      5分   

又因?yàn)?sub>6ec8aac122bd4f6e,得6ec8aac122bd4f6e,那么6ec8aac122bd4f6e,

從而6ec8aac122bd4f6e,于是6ec8aac122bd4f6e。            10分   

2.解:設(shè)A=6ec8aac122bd4f6e,由題知6ec8aac122bd4f6e=,6ec8aac122bd4f6e=3 

6ec8aac122bd4f6e,                      5分

 ∴        ∴A=6ec8aac122bd4f6e       10分

3.解: 直線的參數(shù)方程為6ec8aac122bd4f6e為參數(shù))故直線的普通方程為6ec8aac122bd4f6e  3分

   因?yàn)闉闄E圓6ec8aac122bd4f6e上任意點(diǎn),故可設(shè)6ec8aac122bd4f6e其中6ec8aac122bd4f6e.

  因此點(diǎn)到直線的距離是6ec8aac122bd4f6e            7分

所以當(dāng)6ec8aac122bd4f6e,時,取得最大值.                              10分 

4. 證(1)6ec8aac122bd4f6e 

6ec8aac122bd4f6e6ec8aac122bd4f6e,

∴| f(x1)-f(x2)|<| x1-x2|                       5分   

(2)6ec8aac122bd4f6e,∴f(a)+f(b) ≤

6ec8aac122bd4f6e    6ec8aac122bd4f6e,

6ec8aac122bd4f6e                     10分

 5.解:(1)為實(shí)數(shù),即6ec8aac122bd4f6e為實(shí)數(shù),  ∴b=3            2分

又依題意,b可取1,2,3,4,5,6

故出現(xiàn)b=3的概率為

即事件“為實(shí)數(shù)”的概率為                                            5分

(2)由已知,6ec8aac122bd4f6e                           6分

可知,b的值只能取1、2、3                          

當(dāng)b=1時, 6ec8aac122bd4f6e,即a可取1,2,3

當(dāng)b=2時, 6ec8aac122bd4f6e,即a可取1,2,3

當(dāng)b=3時, 6ec8aac122bd4f6e,即a可取2                

由上可知,共有7種情況下可使事件“6ec8aac122bd4f6e”成立                           9分

又a,b的取值情況共有36種

故事件“6ec8aac122bd4f6e”的概率為                                           10分

6.解:(1)∵A1B1C1-ABC為直三棱柱  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA

6ec8aac122bd4f6e∴A1B與平面A1C1CA所成角的正切值6ec8aac122bd4f6e               3分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角

  平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

∴CG=2,DC=1 在直角三角形CDG中,  

 6ec8aac122bd4f6e  6ec8aac122bd4f6e

即二面角B―A1D―A的平面角的正切值為     6分

(3)在線段AC上存在一點(diǎn)F,使得EF⊥平面A1BD .

其位置為AC中點(diǎn),證明如下:

∵A1B1C1―ABC為直三棱柱 , ∴B1C1//BC

∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA

∵EF在平面A1C1CA內(nèi)的射影為C1F ,F(xiàn)為AC中點(diǎn) ∴C1F⊥A1D  ∴EF⊥A1D

同理可證EF⊥BD,         ∴EF⊥平面A1BD

∵E為定點(diǎn),平面A1BD為定平面,點(diǎn)F唯一            10分

解法二:(1)同解法一                               3分

(2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2 , AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn), 建立如圖所示的坐標(biāo)系得

C(0,0,0) B(2,0,0)  A(0,2,0)

C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

D(0,0,1)  E(1,0,2)

6ec8aac122bd4f6e  設(shè)平面A1BD的法向量為6ec8aac122bd4f6e

6ec8aac122bd4f6e 6ec8aac122bd4f6e 

平面ACC1A1­的法向量為=(1,0,0)  6ec8aac122bd4f6e

即二面角B―A1D―A的平面角的正切值為               6分

(3)在線段AC上存在一點(diǎn)F,設(shè)F(0,y,0)使得EF⊥平面A1BD

欲使EF⊥平面A1BD    由(2)知,當(dāng)且僅當(dāng)//

6ec8aac122bd4f6e 6ec8aac122bd4f6e  

∴存在唯一一點(diǎn)F(0,1,0)滿足條件. 即點(diǎn)F為AC中點(diǎn)        10分

 

 


同步練習(xí)冊答案