設(shè)..則A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

設(shè)定義域為R的函數(shù)f(x)滿足下列條件:①對任意x∈R,f(x)+f(-x)=0;②對任意x1,x2∈[1,a],當(dāng)x2>x1時,有f(x2)>f(x1)>0.則下列不等式不一定成立的是( 。
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

設(shè)F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

設(shè)F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

設(shè)F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

設(shè)F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,滿分40分.)

題號

1

2

3

4

5

6

7

8

選項

C

A

C

B

D

B

B

A

二、填空題(共7小題,計30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計算。)

9、 4       10、__10__(用數(shù)字作答).11、____。12、___0___。

13、      ;14、___8_____.15、   3  

 

三、解答題(考生若有不同解法,請酌情給分。

16.解:(1)…………2分

……………………………………3分

………………………………………………5分

(2)…………………………7分

…………………………………9分

………………………………………10分

∴當(dāng)………………………………12分

 

17.解:⑴、記甲、乙兩人同時參加崗位服務(wù)為事件,那么,即甲、乙兩人同時參加崗位服務(wù)的概率是.……………………4分

⑵、記甲、乙兩人同時參加同一崗位服務(wù)為事件,

那么,…………………………………………………………6分

所以,甲、乙兩人不在同一崗位服務(wù)的概率是.………8分

⑶、隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),則

.所以,

的分布列是:…………………………………………………………………… 10分

1

2

    ∴…………………………………………………………12分

 

18.

解:設(shè)2008年末汽車保有量為a1萬輛,以后各年末汽車保有量依次為a2萬輛,a3萬輛,…,每年新增汽車x萬輛。………………………………………………………………1分

a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…

故an=a1×0.94n-1+x(1+0.94+…+0.94n-2

.………………………………………………6分

(1):當(dāng)x=3萬輛時,an≤30

 則每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求!9分

  (2):如果要求汽車保有量不超過60萬輛,即an≤60(n=1,2,3,…)

則,

即.

對于任意正整數(shù)n,

因此,如果要求汽車保有量不超過60萬輛,x≤3.6(萬輛).………………13分

答:若每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求;每年新增汽車不應(yīng)超過3.6萬輛,則汽車保有量定能達到要求!14分

 

19.解:(1)…………………………………………………………2分

由己知有實數(shù)解,∴,故…………………5分

(2)由題意是方程的一個根,設(shè)另一根為

則,∴……………………………………………………7分

∴,

當(dāng)時,;當(dāng)時,;

當(dāng)時,

∴當(dāng)時,有極大值,又,,

即當(dāng)時,的量大值為  ………………………10分

∵對時,恒成立,∴,

∴或………………………………………………………………13分

故的取值范圍是  ………………………………………14分

20.解:(1)作MP∥AB交BC于點P,NQ∥AB交BE于點Q,連結(jié)PQ,依題意可得MP∥NQ,且MP=NQ,即MNQP是平行四邊形,

∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,

∴AC=BF=,  .

即CP=BQ=.

∴MN=PQ=

(0<a<).…………………………………5分

(2)由(Ⅰ),MN=,所以,當(dāng)a=時,MN=.

即M、N分別移動到AC、BF的中點時,MN的長最小,最小值為.………8分

(3)取MN的中點G,連結(jié)AG、BG,∵AM=AN,BM=BN,G為MN的中點

∴AG⊥MN,BG⊥MN,∠AGB即為二面角α的平面角,………………………11分

又AG=BG=,所以,由余弦定理有cosα=.

故所求二面角的余弦值為-.………………………………………………………14分

(注:本題也可用空間向量,解答過程略)

21.解:⑴、對任意的正數(shù)均有且.

,…………………………………………………4分

又是定義在上的單增函數(shù),.

當(dāng)時,,.,.

當(dāng)時,,

.,

為等差數(shù)列,,. ……………………………6分

⑵、假設(shè)存在滿足條件,即

對一切恒成立.

令,

,………………………10分

故,………………………12分

,單調(diào)遞增,,.

.……………………………………………………………14分

 

(考生若有不同解法,請酌情給分。

 

 

 

 

 


同步練習(xí)冊答案