故.符合題意. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時(shí),,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

,得

①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時(shí),,對于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

當(dāng)時(shí),

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

A

解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

A

解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

A

解析:由題意:等比數(shù)列{}有連續(xù)四項(xiàng)在集合{-54,-24,18,36,81}中,由等比數(shù)列的定義知,四項(xiàng)是兩個(gè)正數(shù),兩個(gè)負(fù)數(shù)且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

已知函數(shù)為實(shí)數(shù)).

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

【解析】第一問中由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

第二問.

當(dāng)時(shí),,在上有,遞增,符合題意;  

,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

(Ⅱ) .

當(dāng)時(shí),,在上有,遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

  .   綜上

 

查看答案和解析>>


同步練習(xí)冊答案