點坐標為.可以推出∠AFB. -------------------8分當直線l的斜率存在時.設l的方程為 y = k.它與拋物線 y 2 = 4x 的交點坐標分別為 A(x1, y1).B(x2, y2). 查看更多

 

題目列表(包括答案和解析)

已知P(x0,y0)是圓C:x2+(y-4)2=1外一點,過P作圓C的切線,切點為A、B,記:四邊形PACB的面積為f(P)
(1)當P點坐標為(1,1)時,求f(P)的值;
(2)當P(x0,y0)在直線3x+4y-6=0上運動時,求f(P)最小值;
(3)當P(x0,y0)在圓(x+4)2+(y-1)2=4上運動時,指出f(P)的取值范圍(可以直接寫出你的結果,不必詳細說理);
(4)當P(x0,y0)在橢圓
x24
+y2=1上運動時f(P)=5是否能成立?若能求出P點坐標,若不能,說明理由.

查看答案和解析>>

已知P(x,y)是圓C:x2+(y-4)2=1外一點,過P作圓C的切線,切點為A、B,記:四邊形PACB的面積為f(P)
(1)當P點坐標為(1,1)時,求f(P)的值;
(2)當P(x,y)在直線3x+4y-6=0上運動時,求f(P)最小值;
(3)當P(x,y)在圓(x+4)2+(y-1)2=4上運動時,指出f(P)的取值范圍(可以直接寫出你的結果,不必詳細說理);
(4)當P(x,y)在橢圓+y2=1上運動時f(P)=5是否能成立?若能求出P點坐標,若不能,說明理由.

查看答案和解析>>

如圖,A,B是單位圓上的兩個質點,B點坐標為(1,0),∠BOA=60°,質點A以1弧度/秒的角速度按逆時針方向在單位圓上運動;質點B以1弧度/秒的角速度按順時針方向在單位圓上運動,過點A作AA1⊥y軸于A1,過點B作BB1⊥y軸于B1
(1)求經過1秒后,∠BOA的弧度數;
(2)求質點A,B在單位圓上第一次相遇所用的時間;
(3)記A1B1的距離為y,請寫出y與時間t的函數關系式,并求出y的最大值.

查看答案和解析>>

P與F分別是拋物線x2=-4y上的點和焦點,已知點A(1,-2),為使|PA|+|PF|取最小值,則P點坐標為
(1,-
1
4
(1,-
1
4

查看答案和解析>>

△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為
(5,3)
(5,3)

查看答案和解析>>


同步練習冊答案