解答: 因?yàn)?由題意得所以選A學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

 [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足。

(Ⅰ)求角C的大;

(Ⅱ)求的最大值。

 (Ⅰ)解:由題意可知

absinC=,2abcosC.

所以tanC=.

因?yàn)?<C<,

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

當(dāng)△ABC為正三角形時(shí)取等號(hào),

所以sinA+sinB的最大值是.

 

 


 [番茄花園1]1.

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

所以

(2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

于是,,

    

所以,當(dāng),且時(shí),取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設(shè)

。

得定義知,,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

綜上,對于所有的的最大值為

 

查看答案和解析>>


同步練習(xí)冊答案