(2)假設(shè)當(dāng)1<<則.又在上單調(diào)遞減.<<==.這說明時.命題也成立. 查看更多

 

題目列表(包括答案和解析)

對于不等式
n2+n
<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時,
12+1
<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時,不等式成立,即
k2+k
<k+1,則當(dāng)n=k+1時,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴當(dāng)n=k+1時,不等式成立.
則上述證法(  )
A、過程全部正確
B、n=1驗得不正確
C、歸納假設(shè)不正確
D、從n=k到n=k+1的推理不正確

查看答案和解析>>

對于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時,<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時,不等式成立,即<k+1,則當(dāng)n=k+1時,===(k+1)+1,∴當(dāng)n=k+1時,不等式成立.
則上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確

查看答案和解析>>

對于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時,<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時,不等式成立,即<k+1,則當(dāng)n=k+1時,===(k+1)+1,∴當(dāng)n=k+1時,不等式成立.
則上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確

查看答案和解析>>

對于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時,<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時,不等式成立,即<k+1,則當(dāng)n=k+1時,===(k+1)+1,∴當(dāng)n=k+1時,不等式成立.
則上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確

查看答案和解析>>

對于不等式<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時,<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時,不等式成立,即<k+1,則當(dāng)n=k+1時,===(k+1)+1,∴當(dāng)n=k+1時,不等式成立.
則上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確

查看答案和解析>>


同步練習(xí)冊答案