題目列表(包括答案和解析)
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù),且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當(dāng)k0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無(wú)減區(qū)間;
當(dāng)k>0時(shí),>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-(x
1)
=
=
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
(本題滿(mǎn)分12分)
<ppt><1>已<\ppt>知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若
是
的必要而不充分條件, 求實(shí)數(shù)m的取值范圍.
若<0,則下列不等式中,正確的有 ( )
①a<b<0 ②|a|>|b| ③<1 ④
>2
A. 1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
已知橢圓+=1(a>b>0)上的點(diǎn)M (1, )到它的兩焦點(diǎn)F1,F(xiàn)2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn)。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程。
【解析】本試題主要是考查橢圓的方程和橢圓的幾何性質(zhì),以及直線與橢圓的位置關(guān)系的綜合運(yùn)用。聯(lián)立方程組,結(jié)合韋達(dá)定理求解和運(yùn)算。
已知橢圓+=1(a>b>0)上的點(diǎn)M (1, )到它的兩焦點(diǎn)F1,F(xiàn)2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn)。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程。
【解析】本試題主要是考查橢圓的方程和橢圓的幾何性質(zhì),以及直線與橢圓的位置關(guān)系的綜合運(yùn)用。聯(lián)立方程組,結(jié)合韋達(dá)定理求解和運(yùn)算。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com