(II)設, 查看更多

 

題目列表(包括答案和解析)

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當n=4時,求
a1d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列
(i)當n=4時,求
a1d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:存在一個各項及公差均不為零的n(n≥4)項等差數(shù)列,任意刪去其中的k項(1≤k≤n-3),都不能使剩下的項(按原來的順序)構成等比數(shù)列.

查看答案和解析>>

(I)設是各項均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項得到的數(shù)列(按原來的順序)是等比數(shù)列:

①當時,求的數(shù)值;②求的所有可能值;

(II)求證:對于一個給定的正整數(shù),存在一個各項及公差都不為零的等差數(shù)列,其中任意三項(按原來的順序)都不能組成等比數(shù)列。

查看答案和解析>>

(文)

設函數(shù),其圖象在點,處的切線的斜率分別為 

(I)求證:;  

(II)若函數(shù)的遞增區(qū)間為,求||的取值范圍;

(III)若當時(是與無關的常數(shù)),恒有,試求的最小值。

查看答案和解析>>

(I)設是各項均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項得到的數(shù)列(按原來的順序)是等比數(shù)列:

①當時,求的數(shù)值;②求的所有可能值;

(II)求證:對于一個給定的正整數(shù),存在一個各項及公差都不為零的等差數(shù)列,其中任意三項(按原來的順序)都不能組成等比數(shù)列。

 

查看答案和解析>>

 

一、選擇題

ACADB   BBCAB

二、填空題

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答題:

17.(1)恰有3個紅球的概率為                                     …………5分

   (2)停止摸球時,已知摸到紅球次數(shù)為三次記為事件B

則事件B發(fā)生所摸球的次數(shù)為3次 4次或5次                       …………8分

所以              …………12分

 

18.解:設           …………2分

    即

                                              …………4分

   (1)當

                                                                 …………8分

   (2)當上是增函數(shù),

    所以

    故                                           …………12分

 

19.解:(I)依題意

   

                                       …………3分

    故上是減函數(shù)

   

    即                                                            ……………6分

   (II)由(I)知上的減函數(shù),

    又

                                                                    …………9分

    故

    因此,存在實數(shù)m,使得命p且q為真命題,且m的取值范圍為

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由題知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    為首項,公差為1的等差數(shù)列,

                                 …………4分

    當,

                                                                    …………6分

    證明:(II)

    ,…………8分

   

    …………14分

 

22.解:(I)函數(shù)內是奇函數(shù)等價于

    對任意                                …………2分

   

    即,…………4分

    因為,

    即,                                                                    …………6分

    此式對任意,

    所以得b的取值范圍是                                                 …………8分

   (II)設任意的,

    得,                                            …………10分

    所以,                   …………12分

    從而,

    因此內是減函數(shù),具有單調性。                      …………14分

 

 


同步練習冊答案