題目列表(包括答案和解析)
函數(shù)y=x2(x>0)的圖像在點(diǎn)(ak,ak2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為ak+1,k為正整數(shù),a1=16,則a1+a3+a5=____▲_____
在點(diǎn)(ak,ak2)處的切線方程為:當(dāng)時(shí),解得,
所以。
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)。科。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問(wèn),由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
4. m>2或m<-2 解析:因?yàn)閒(x)=在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機(jī)變量的所有等可能取值為1,2…,n,若,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以,即,解得
6.解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個(gè)零點(diǎn),所以方程只有一個(gè)根,因此,所以
D
[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問(wèn)利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對(duì)任意不等式恒成立,
問(wèn)題等價(jià)于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以; ............6分
當(dāng)b<1時(shí),;
當(dāng)時(shí),;
當(dāng)b>2時(shí),; ............8分
問(wèn)題等價(jià)于 ........11分
解得b<1 或 或 即,所以實(shí)數(shù)b的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com