14. 已知函數(shù)反函數(shù)的圖象恒過定點(diǎn).則點(diǎn)在直線上.若則的最小值為 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax+1-3(a>0且a≠1)的反函數(shù)的圖象恒過定點(diǎn)A,且點(diǎn)A在直線mx+ny+1=0上,若m>0,n>0.則
1
m
+
2
n
的最小值為
 

查看答案和解析>>

已知函數(shù)f(x)=
a•2x-b
2x+b
是定義在R上的奇函數(shù),其反函數(shù)的圖象過點(diǎn)(
1
3
,1)
,若x∈(-1,1)時(shí),不等式f-1(x)≥log2
1+x
m
恒成立,則實(shí)數(shù)m的取值范圍為
m≥2
m≥2

查看答案和解析>>

已知函數(shù),恒過定點(diǎn) (3,2).

(1)求實(shí)數(shù);

(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;

(3)對(duì)于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

 

查看答案和解析>>

已知函數(shù)恒過定點(diǎn)

(1)求實(shí)數(shù);

(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;

(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

 

查看答案和解析>>

已知函數(shù),恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對(duì)于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由題意知對(duì)任意實(shí)數(shù)x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的單調(diào)增區(qū)間為……………………12分

18、

解:(Ⅰ)證明取SC的中點(diǎn)R,連QR, DR.。

由題意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P為坐標(biāo)原點(diǎn),PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),

面PBC的法向量為(),設(shè)為面PQC的法向量,

COS

              …………12分

19、解

     

設(shè)A,B兩點(diǎn)的坐標(biāo)為()、()則

(Ⅰ)經(jīng)過A、B兩點(diǎn)的直線方程為

由得:

令得:                                        

    從而

(否則,有一個(gè)為零向量)

  代入(1)得  

始終經(jīng)過這個(gè)定點(diǎn)                   …………………(6分)

(Ⅱ)設(shè)AB中點(diǎn)的坐標(biāo)為(),則

AB的中點(diǎn)到直線的距離d為:

因?yàn)閐的最小值為        ……………(12分)

20、解:(Ⅰ)密碼中不同數(shù)字的個(gè)數(shù)為2的事件為密碼中只有兩個(gè)數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.

     …………………………………………………………………4分

   (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.

    若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列為:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

時(shí),,即

當(dāng)時(shí),

在上是減函數(shù)的充要條件為           ………(4分)

(Ⅱ)由(Ⅰ)知,當(dāng)時(shí)為減函數(shù),的最大值為;

當(dāng)時(shí),

當(dāng)時(shí),當(dāng)時(shí)

即在上是增函數(shù),在上是減函數(shù),時(shí)取最大值,最大值為

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是減函數(shù)

,即

,解得:或

故所求不等式的解集為[     ……………(13分)

22、

解::⑴ 

,

,即為的表達(dá)式。        (6分)

⑵,,又()

要使成立,只要,即,

即為所求。

故有

                                  (13分)

 


同步練習(xí)冊(cè)答案