16.以下四個關(guān)于圓錐曲線的命題中①過圓內(nèi)一點(diǎn)作圓的動弦.則中點(diǎn)的軌跡為橢圓,②設(shè).為兩個定點(diǎn).若.則動點(diǎn)的軌跡為雙曲線的一支,③方程的兩個根可分別作為橢圓和雙曲線的離心率,④無論方程表示的是橢圓還是雙曲線.它們都有相同的焦點(diǎn).其中真命題的序號為 . . 查看更多

 

題目列表(包括答案和解析)

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),若||PA|-|PB||=k,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
OA
+
1
2
OB
,則動點(diǎn)P的軌跡為橢圓;
③拋物線x=ay2(a≠0)的焦點(diǎn)坐標(biāo)是(
1
4a
,0)
;
④曲線
x2
16
-
y2
9
=1
與曲線
x2
35-λ
+
y2
10-λ
=1
(λ<35且λ≠10)有相同的焦點(diǎn).
其中真命題的序號為
 
寫出所有真命題的序號.

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點(diǎn)P的軌跡為雙曲線;
②以定點(diǎn)A為焦點(diǎn),定直線l為準(zhǔn)線的橢圓(A不在l上)有無數(shù)多個;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④過原點(diǎn)O任做一直線,若與拋物線y2=3x,y2=7x分別交于A、B兩點(diǎn),則
OA
OB
為定值.
其中真命題的序號為
 
(寫出所有真命題的序號)

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點(diǎn)P的軌跡為雙曲線;
②以過拋物線的焦點(diǎn)的一條弦AB為直徑作圓,則該圓與拋物線的準(zhǔn)線相切;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
其中真命題的序號為
 
(寫出所有真命題的序號)

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
35
-y2=1
和橢圓
x2
25
+
y2
9
=1
有相同的焦點(diǎn).
其中真命題的序號為
(寫出所有真命題的序號)

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:
①雙曲線
x2
16
-
y2
9
=1
與橢圓
x2
49
+
y2
24
=1
有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A、B為兩個定點(diǎn),P為動點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動點(diǎn)P的軌跡為橢圓;
③方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④過雙曲線x2-
y2
2
=1
的右焦點(diǎn)F作直線l交雙曲線于A、B兩點(diǎn),若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號為
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由題意知對任意實(shí)數(shù)x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的單調(diào)增區(qū)間為……………………12分

18、

解:(Ⅰ)證明取SC的中點(diǎn)R,連QR, DR.。

由題意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P為坐標(biāo)原點(diǎn),PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),

面PBC的法向量為(),設(shè)為面PQC的法向量,

COS

              …………12分

19、解

     

設(shè)A,B兩點(diǎn)的坐標(biāo)為()、()則

(Ⅰ)經(jīng)過A、B兩點(diǎn)的直線方程為

由得:

令得:                                        

    從而

(否則,有一個為零向量)

  代入(1)得  

始終經(jīng)過這個定點(diǎn)                   …………………(6分)

(Ⅱ)設(shè)AB中點(diǎn)的坐標(biāo)為(),則

AB的中點(diǎn)到直線的距離d為:

因?yàn)閐的最小值為        ……………(12分)

20、解:(Ⅰ)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.

     …………………………………………………………………4分

   (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.

    若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列為:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

時,,即

當(dāng)時,

在上是減函數(shù)的充要條件為           ………(4分)

(Ⅱ)由(Ⅰ)知,當(dāng)時為減函數(shù),的最大值為;

當(dāng)時,

當(dāng)時,當(dāng)時

即在上是增函數(shù),在上是減函數(shù),時取最大值,最大值為

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是減函數(shù)

,即

,解得:或

故所求不等式的解集為[     ……………(13分)

22、

解::⑴ 

,

,即為的表達(dá)式。        (6分)

⑵,,又()

要使成立,只要,即,

即為所求。

故有

                                  (13分)

 


同步練習(xí)冊答案