19.已知A,B是拋物線上的兩個(gè)動(dòng)點(diǎn).為坐標(biāo)原點(diǎn).非零向量滿足.(Ⅰ)求證:直線經(jīng)過一定點(diǎn),(Ⅱ)當(dāng)?shù)闹悬c(diǎn)到直線的距離的最小值為時(shí).求的值. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);

(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;

(Ⅱ)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

 

查看答案和解析>>

(本小題滿分12分)已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=

(Ⅰ)求點(diǎn)S的坐標(biāo);

(Ⅱ)以S為圓心的動(dòng)圓與軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線C于M、N兩點(diǎn);

①判斷直線MN的斜率是否為定值,并說明理由;

②延長(zhǎng)NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

(本小題滿分12分)

已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。

(1)求橢圓M的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)t的取值范圍。

 

查看答案和解析>>

(本小題滿分12分)已知橢圓M的中心為坐標(biāo)原點(diǎn) ,且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。

(1)求橢圓M的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)t的取值范圍。

 

查看答案和解析>>

(本小題滿分12分)已知橢圓E的長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),離心率是

(1)求橢圓E的方程;

(2)過點(diǎn)C(—1,0),斜率為k的動(dòng)直線與橢圓E相交于A、B兩點(diǎn),請(qǐng)問x軸上是否存在點(diǎn)M,使為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由題意知對(duì)任意實(shí)數(shù)x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的單調(diào)增區(qū)間為……………………12分

18、

解:(Ⅰ)證明取SC的中點(diǎn)R,連QR, DR.。

由題意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P為坐標(biāo)原點(diǎn),PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),

面PBC的法向量為(),設(shè)為面PQC的法向量,

COS

              …………12分

19、解

     

設(shè)A,B兩點(diǎn)的坐標(biāo)為()、()則

(Ⅰ)經(jīng)過A、B兩點(diǎn)的直線方程為

由得:

令得:                                        

    從而

(否則,有一個(gè)為零向量)

  代入(1)得  

始終經(jīng)過這個(gè)定點(diǎn)                   …………………(6分)

(Ⅱ)設(shè)AB中點(diǎn)的坐標(biāo)為(),則

AB的中點(diǎn)到直線的距離d為:

因?yàn)閐的最小值為        ……………(12分)

20、解:(Ⅰ)密碼中不同數(shù)字的個(gè)數(shù)為2的事件為密碼中只有兩個(gè)數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.

     …………………………………………………………………4分

   (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.

    若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列為:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

時(shí),,即

當(dāng)時(shí),

在上是減函數(shù)的充要條件為           ………(4分)

(Ⅱ)由(Ⅰ)知,當(dāng)時(shí)為減函數(shù),的最大值為;

當(dāng)時(shí),

當(dāng)時(shí),當(dāng)時(shí)

即在上是增函數(shù),在上是減函數(shù),時(shí)取最大值,最大值為

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是減函數(shù)

,即

,解得:或

故所求不等式的解集為[     ……………(13分)

22、

解::⑴ 

,即為的表達(dá)式。        (6分)

⑵,,又()

要使成立,只要,即,

即為所求。

故有

                                  (13分)

 


同步練習(xí)冊(cè)答案