已知點列滿足:..求的表達式,.且有成立.試求a的取值范圍,(Ⅲ)設(shè)⑵中的數(shù)列{}的前n項和為.試證:. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)
已知,數(shù)列的前n項和為,點在曲線 上.
(1)求數(shù)列的通項公式;
(2)數(shù)列的前n項和滿足,若數(shù)列是等差數(shù)列,求;
(3)求證:

查看答案和解析>>

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點A、B是函數(shù)圖像上的點,正半軸上的點.

(1) 求的解析式;

(2) 設(shè)為坐標(biāo)原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;

(3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:。

 

查看答案和解析>>

(本小題滿分13分)已知橢圓的中心在原點,一個焦點F1(0,-2),且離心率e滿足:,e,成等比數(shù)列.

(1)求橢圓方程;

(2)是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-

平分.若存在,求出l的傾斜角的范圍;若不存在,請說明理由.

 

 

 

查看答案和解析>>

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點A、B是函數(shù)圖像上的點,正半軸上的點.
(1) 求的解析式;
(2) 設(shè)為坐標(biāo)原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:

查看答案和解析>>

(本小題滿分13分)

已知函數(shù),.

(Ⅰ)求函數(shù)的零點個數(shù)。并說明理由;

(Ⅱ)設(shè)數(shù)列{ }()滿足,,證明:存在常數(shù)M,使得 對于任意的,都有≤ 

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由題意知對任意實數(shù)x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的單調(diào)增區(qū)間為……………………12分

18、

解:(Ⅰ)證明取SC的中點R,連QR, DR.。

由題意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P為坐標(biāo)原點,PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),

面PBC的法向量為(),設(shè)為面PQC的法向量,

COS

              …………12分

19、解

     

設(shè)A,B兩點的坐標(biāo)為()、()則

(Ⅰ)經(jīng)過A、B兩點的直線方程為

由得:

令得:                                        

    從而

(否則,有一個為零向量)

  代入(1)得  

始終經(jīng)過這個定點                   …………………(6分)

(Ⅱ)設(shè)AB中點的坐標(biāo)為(),則

AB的中點到直線的距離d為:

因為d的最小值為        ……………(12分)

20、解:(Ⅰ)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.

     …………………………………………………………………4分

   (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.

    若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列為:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

時,,即

當(dāng)時,

在上是減函數(shù)的充要條件為           ………(4分)

(Ⅱ)由(Ⅰ)知,當(dāng)時為減函數(shù),的最大值為;

當(dāng)時,

當(dāng)時,當(dāng)時

即在上是增函數(shù),在上是減函數(shù),時取最大值,最大值為

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是減函數(shù)

,即

,解得:或

故所求不等式的解集為[     ……………(13分)

22、

解::⑴ 

,即為的表達式。        (6分)

⑵,,又()

要使成立,只要,即,

即為所求。

故有

                                  (13分)

 


同步練習(xí)冊答案