錯解:兩邊平行得.即.解得. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當(dāng)sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

甲、乙兩人解關(guān)于x的方程:log2x+b+clogx2=0,甲寫錯了常數(shù)b,得兩根
1
4
1
8
;乙寫錯了常數(shù)c,得兩根
1
2
,64.求這個方程的真正根.

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足

,

第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

若下列方程:,,至少有一個方程有實根,試求實數(shù)的取值范圍.

解:設(shè)三個方程均無實根,則有

解得,即

所以當(dāng)時,三個方程至少有一個方程有實根.

 

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進(jìn)入4節(jié)車廂共有256種不同的可能,6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個四邊形是菱形,這時菱形的一條對角線垂直拋物線的對稱軸,這時四邊形的必有一個頂點在拋物線的對稱軸上(非拋物線的頂點); ④平行四邊形,也不可能,因為拋物上四個點組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點組成的四邊形可能是②③⑤.

7. 解:復(fù)數(shù)=。

8. 解:。

9. 解:已知 ,,,∴ ,

=

=

10. 解:在數(shù)列中,若,∴ ,即{}是以為首項,2為公比的等比數(shù)列,,所以該數(shù)列的通項.

11.解:設(shè),函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標(biāo)系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),,

目標(biāo)函數(shù)(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點處取得最大值,則斜率應(yīng)小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當(dāng)直線過點(1,2)時,

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

18.【答案】

【分析】

         代入得:

         設(shè)

         又

        

19.解:, 

20.解:  點在x=0處連續(xù),

所以  故

21.解: 

22.解:  ,

23.解:設(shè)圓心,直線的斜率為, 弦AB的中點為,的斜率為,,所以 由點斜式得

24. 解:則底面共

,,由分類計數(shù)原理得上底面共,由分步類計數(shù)原理得共有

25.解析:本小題主要考查三點共線問題。

      (舍負(fù)).

26.解析:本小題主要考查橢圓的第一定義的應(yīng)用。依題直線過橢圓的左焦點,在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應(yīng)用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內(nèi)接幾何體體積計算問題。其關(guān)鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點就是球心(到

D、A、C、B四點距離相等),所以球的半徑就是線段DC長度的一半。

29.解析:本小題主要考查二次函數(shù)問題。對稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗時,

不符,而時滿足題意.

30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個元素有

種方案,再向這排好的4個元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規(guī)劃的相關(guān)知識。由恒成立知,當(dāng)時,

恒成立,∴;同理,∴以,b為坐標(biāo)點

所形成的平面區(qū)域是一個正方形,所以面積為1.

32.解析:,所以,系數(shù)為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點為,所以圓心坐標(biāo)為,,圓C的方程為.

35.解析:令,則

所以.

36.解析:

所以.

37.解析:由已知得,單調(diào)遞減,所以當(dāng)時,

所以,因為有且只有一個常數(shù)符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開式中項為

  ∴所求系數(shù)為   故填

【點評】:此題重點考察二項展開式中指定項的系數(shù),以及組合思想;

【突破】:利用組合思想寫出項,從而求出系數(shù);

39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

的圓心為,半徑為

 點到直線的距離為

  ∴      故上各點到的距離的最小值為

【點評】:此題重點考察圓的標(biāo)準(zhǔn)方程和點到直線的距離;

【突破】:數(shù)形結(jié)合,使用點到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點評】:此題重點考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數(shù)形結(jié)合,重視在立體幾何中解直角三角形,熟記有關(guān)公式。

41.【解】:∵等差數(shù)列的前項和為,且 

  即   ∴

  ∴,

  ∴  故的最大值為,應(yīng)填

【點評】:此題重點考察等差數(shù)列的通項公式,前項和公式,以及不等式的變形求范圍;

【突破】:利用等差數(shù)列的前項和公式變形不等式,利用消元思想確定的范圍解答本題的關(guān)鍵;

42.解:

43.解:設(shè),即

是等邊三角形,

中,

44.解:①,向量垂直

構(gòu)成等邊三角形,的夾角應(yīng)為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設(shè)A()B(,)由,,();∴由拋物線的定義知

【考點】直線與拋物線的位置關(guān)系,拋物線定義的應(yīng)用

49.【答案】兩組相對側(cè)面分別平行;一組相對側(cè)面平行且全等;對角線交于一點;底面是平行四邊形.

注:上面給出了四個充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數(shù)基本知識。求解過程要注意依據(jù)函數(shù)的定義域進(jìn)行分段求解以及反函數(shù)的定義域問題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點到面的距離。設(shè)球的半徑為,則,∴設(shè)、兩點對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設(shè)所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項式定理中求特定項問題。依題中,只有時,其展開式既不出現(xiàn)常數(shù)項,也不會出現(xiàn)與、乘積為常數(shù)的項。

53.答案:

解析:本小題主要針對考查三角函數(shù)圖像對稱性及周期性。依題在區(qū)間有最小值,無最大值,∴區(qū)間的一個半周期的子區(qū)間,且知的圖像關(guān)于對稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經(jīng)過點P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數(shù)的圖象過點(1,2)得: 即函數(shù)過點 則其反函數(shù)過點所以函數(shù)的圖象一定過點

61.【答案】 ,

【解析】(1)當(dāng)a>0時,由,所以的定義域是;

        (2) 當(dāng)a>1時,由題意知;當(dāng)0<a<1時,為增函數(shù),不合;

           當(dāng)a<0時,在區(qū)間上是減函數(shù).故填.

62.【答案】   ,  6

【解析】第二空可分:

①當(dāng) 時, ;

②當(dāng) 時, ;

③當(dāng)時, ;

所以 

也可用特殊值法或ij同時出現(xiàn)6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為

65.解:依題意,所以

66.解:由觀察可知當(dāng),每一個式子的第三項的系數(shù)是成等差數(shù)列的,所以,

第四項均為零,所以。

67.解:令,令

    所以

68. 解:圓心為,要沒有公共點,根據(jù)圓心到直線的距離大于半徑可得

,即,

69.解:依題可以構(gòu)造一個正方體,其體對角線就是外接球的直徑.

 ,

70. 解:①對除法如不滿足,所以排除,

②取,對乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點】: 復(fù)數(shù)的運算

【易錯】: 增根a=1沒有舍去。

72.【答案】: 0

【分析】: 利用數(shù)形結(jié)合知,向量a與


同步練習(xí)冊答案