講解 容易發(fā)現(xiàn).這就是我們找出的有用的規(guī)律. 查看更多

 

題目列表(包括答案和解析)

一口袋內(nèi)裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)是一個隨機變量,則=______________。(填計算式)

 [解題思路]:這是一個“12次獨立重復試驗恰有10次發(fā)生”的概率問題,同學們很容易由二項分布原理得到,這就忽視了隱含條件“第12次抽取的是紅球”,此種解法的結果包含著第12次抽取到黃球。

查看答案和解析>>

喬和摩進行了一次關于他們前一天夜里進行的活動的談話.然而談話卻被監(jiān)聽錄音機記錄了下來,聯(lián)邦調(diào)查局拿到磁帶并發(fā)現(xiàn)其中有10秒鐘長的一段內(nèi)容包含有他們倆犯罪的信息 然而后來發(fā)現(xiàn),這段談話的一部分被聯(lián)邦調(diào)查局的一名工作人員擦掉了,該工作人員聲稱她完全是無意中按錯了鍵,并從即刻起往后的所有內(nèi)容都被擦掉了試問如果這10秒鐘長的談話記錄開始于磁帶記錄后的半分鐘處,那么含有犯罪內(nèi)容的談話被部分或全部偶然擦掉的概率將是多大?

查看答案和解析>>

19、天水一中對其網(wǎng)絡服務器開放的4個外網(wǎng)絡端口的安全進行監(jiān)控,以便在發(fā)現(xiàn)黑客入侵時及時跟蹤鎖定.根據(jù)跟蹤調(diào)查發(fā)現(xiàn),這4個網(wǎng)絡端口各自受到黑客入侵的概率為0.1,求:
(1)恰有3個網(wǎng)絡端口受到黑客入侵的概率是多少?
(2)至少有2個網(wǎng)絡端口受到黑客入侵的概率是多少?

查看答案和解析>>

第26屆世界大學生夏季運動會將于2011年8月12日至23日在深圳舉行,為了搞好接待工作,組委會在某學院招募了12名男志愿者和18名女志愿者,調(diào)查發(fā)現(xiàn),這30名志愿者的身高如下:(單位:cm  )
男                   女
9   15             7   7  8  9  9
9  8   16          1  2  4  5  8  9
8  6  5            0  17  2  3  4  5  6
7  4  2            1 18   0  1
1                  19
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下定義為“非高個子”.
(1)如果用分層抽樣的方法從志愿者中抽取5人,“高個子”和“非高個子”各抽取多少人?
(2)再從這5人中選2人,則至少有一人是“高個子”的概率是多少?

查看答案和解析>>

國家安全機關用監(jiān)聽錄音機記錄了兩個間諜的談話,發(fā)現(xiàn)了30min長的磁帶上,從開始30s處起,有10s長的一段內(nèi)容包含兩間諜犯罪的信息,后來發(fā)現(xiàn),這段談話的一部分被某工作人員擦掉了,該工作人員聲稱她完全是無意中按錯了鍵,使從此處起往后的所有內(nèi)容都被擦掉了,那么由于按錯了鍵使含有犯罪內(nèi)容的談話被部分或全部擦掉的概率為
1
45
1
45

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進入4節(jié)車廂共有256種不同的可能,6位乘客進入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個四邊形是菱形,這時菱形的一條對角線垂直拋物線的對稱軸,這時四邊形的必有一個頂點在拋物線的對稱軸上(非拋物線的頂點); ④平行四邊形,也不可能,因為拋物上四個點組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點組成的四邊形可能是②③⑤.

7. 解:復數(shù)=。

8. 解:

9. 解:已知 ,,∴ ,

=

=

10. 解:在數(shù)列中,若,∴ ,即{}是以為首項,2為公比的等比數(shù)列,,所以該數(shù)列的通項.

11.解:設,函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),,

目標函數(shù)(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點處取得最大值,則斜率應小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當直線過點(1,2)時,

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

18.【答案】

【分析】

         代入得:

         設

         又

        

19.解: 

20.解:  點在x=0處連續(xù),

所以  故

21.解: 

22.解:  ,

23.解:設圓心,直線的斜率為, 弦AB的中點為,的斜率為,所以 由點斜式得

24. 解:則底面共,

,,由分類計數(shù)原理得上底面共,由分步類計數(shù)原理得共有

25.解析:本小題主要考查三點共線問題。

      (舍負).

26.解析:本小題主要考查橢圓的第一定義的應用。依題直線過橢圓的左焦點,在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內(nèi)接幾何體體積計算問題。其關鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點就是球心(到

D、A、C、B四點距離相等),所以球的半徑就是線段DC長度的一半。

29.解析:本小題主要考查二次函數(shù)問題。對稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗時,

不符,而時滿足題意.

30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個元素有

種方案,再向這排好的4個元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規(guī)劃的相關知識。由恒成立知,當時,

恒成立,∴;同理,∴以,b為坐標點

所形成的平面區(qū)域是一個正方形,所以面積為1.

32.解析:,所以,系數(shù)為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點為,所以圓心坐標為,圓C的方程為.

35.解析:令,,則

所以.

36.解析:

所以.

37.解析:由已知得,單調(diào)遞減,所以當時,

所以,因為有且只有一個常數(shù)符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開式中項為

  ∴所求系數(shù)為   故填

【點評】:此題重點考察二項展開式中指定項的系數(shù),以及組合思想;

【突破】:利用組合思想寫出項,從而求出系數(shù);

39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

的圓心為,半徑為

 點到直線的距離為

  ∴      故上各點到的距離的最小值為

【點評】:此題重點考察圓的標準方程和點到直線的距離;

【突破】:數(shù)形結合,使用點到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點評】:此題重點考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數(shù)形結合,重視在立體幾何中解直角三角形,熟記有關公式。

41.【解】:∵等差數(shù)列的前項和為,且 

  即   ∴

  ∴,,

  ∴  故的最大值為,應填

【點評】:此題重點考察等差數(shù)列的通項公式,前項和公式,以及不等式的變形求范圍;

【突破】:利用等差數(shù)列的前項和公式變形不等式,利用消元思想確定的范圍解答本題的關鍵;

42.解:

43.解:設,即

是等邊三角形,,

中,

44.解:①,向量垂直

構成等邊三角形,的夾角應為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設A(,)B(,)由,();∴由拋物線的定義知

【考點】直線與拋物線的位置關系,拋物線定義的應用

49.【答案】兩組相對側面分別平行;一組相對側面平行且全等;對角線交于一點;底面是平行四邊形.

注:上面給出了四個充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數(shù)基本知識。求解過程要注意依據(jù)函數(shù)的定義域進行分段求解以及反函數(shù)的定義域問題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點到面的距離。設球的半徑為,則,∴、兩點對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項式定理中求特定項問題。依題中,只有時,其展開式既不出現(xiàn)常數(shù)項,也不會出現(xiàn)與、乘積為常數(shù)的項。

53.答案:

解析:本小題主要針對考查三角函數(shù)圖像對稱性及周期性。依題在區(qū)間有最小值,無最大值,∴區(qū)間的一個半周期的子區(qū)間,且知的圖像關于對稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經(jīng)過點P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數(shù)的圖象過點(1,2)得: 即函數(shù)過點 則其反函數(shù)過點所以函數(shù)的圖象一定過點

61.【答案】 ,

【解析】(1)當a>0時,由,所以的定義域是;

        (2) 當a>1時,由題意知;當0<a<1時,為增函數(shù),不合;

           當a<0時,在區(qū)間上是減函數(shù).故填.

62.【答案】   ,  6

【解析】第二空可分:

①當 時, ;

②當 時, ;

③當時, ;

所以 

也可用特殊值法或ij同時出現(xiàn)6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為。

65.解:依題意,所以

66.解:由觀察可知當,每一個式子的第三項的系數(shù)是成等差數(shù)列的,所以

第四項均為零,所以。

67.解:令,令

    所以

68. 解:圓心為,要沒有公共點,根據(jù)圓心到直線的距離大于半徑可得

,即

69.解:依題可以構造一個正方體,其體對角線就是外接球的直徑.

 ,

70. 解:①對除法如不滿足,所以排除,

②取,對乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點】: 復數(shù)的運算

【易錯】: 增根a=1沒有舍去。

72.【答案】: 0

【分析】: 利用數(shù)形結合知,向量a與


同步練習冊答案