即所求的二面角的大小為--------------- 得 分評(píng)卷人 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)。

(1)求函數(shù)的最小正周期和最大值;

(2)求函數(shù)的增區(qū)間;

(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過(guò)怎樣的變換得到?

【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運(yùn)用。第一問(wèn)中,利用可知函數(shù)的周期為,最大值為。

第二問(wèn)中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。

第三問(wèn)中,利用圖像將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。

解:(1)函數(shù)的最小正周期為,最大值為。

(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。

 

所求的增區(qū)間為

所求的減區(qū)間為,

(3)將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。

 

查看答案和解析>>

已知x,y∈R+且x+y=4,求
1
x
+
2
y
的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
xy
①,即
1
xy
1
2
②,又因?yàn)?span id="z1vhhrz" class="MathJye">
1
x
+
2
y
≥2
2
xy
③,由②③得
1
x
+
2
y
2
④,即所求最小值為
2
⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因
 

查看答案和解析>>

已知x>0,y>0且x+y=4,求的最小值.某學(xué)生給出如下解法:由x+y=4,得4≥2①,即②,又因?yàn)?SUB>≥2③,由②③得④,即所求最小值為⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因:__________.

查看答案和解析>>

如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問(wèn)中,利用線(xiàn)線(xiàn)垂直,得到線(xiàn)面垂直,然后利用性質(zhì)定理得到線(xiàn)線(xiàn)垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問(wèn)中,作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

已知x,y∈R+且x+y=4,求
1
x
+
2
y
的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
xy
①,即
1
xy
1
2
②,又因?yàn)?span dealflag="1" mathtag="math" >
1
x
+
2
y
≥2
2
xy
③,由②③得
1
x
+
2
y
2
④,即所求最小值為
2
⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因______.

查看答案和解析>>


同步練習(xí)冊(cè)答案