又由(Ⅰ)中 知.且. 查看更多

 

題目列表(包括答案和解析)

已知向量,且,A為銳角,求:

(1)角A的大。

(2)求函數(shù)的單調(diào)遞增區(qū)間和值域.

【解析】第一問(wèn)中利用,解得   又A為銳角                 

      

第二問(wèn)中,

 解得單調(diào)遞增區(qū)間為

解:(1)        ……………………3分

   又A為銳角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得單調(diào)遞增區(qū)間為

                                                  ……………………10分

 

 

查看答案和解析>>

已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

 故

,又由題設(shè)    從而

第二問(wèn)中,

當(dāng)時(shí),,時(shí)

時(shí), 

時(shí),

分別討論得到結(jié)論。

由題設(shè)可知

 故

,又由題設(shè)   

從而……………………4分

(2)

當(dāng)時(shí),,時(shí)……………………6分

時(shí),……8分

時(shí),

 ……………………10分

綜上可得 

 

查看答案和解析>>

設(shè)f是由集合A={x|x∈N,且1≤x≤26}到B={a,b,c,…,z}(即26個(gè)英文字母按照字母表順序排列)的映射,集合B中的任何一個(gè)元素在A中也只有唯一的元素與之對(duì)應(yīng),其對(duì)應(yīng)法則如圖所示(依次對(duì)齊);又知函數(shù)g(x)=
log232-x,(22<x<32)
x+4,(0≤x≤22)

若f(x1),f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列組成的英文單詞為exam,則x1+x2=
35
35

查看答案和解析>>

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

設(shè)f是由集合A={x|x∈N,且1≤x≤26}到B={a,b,c,…,z}(即26個(gè)英文字母按照字母表順序排列)的映射,集合B中的任何一個(gè)元素在A中也只有唯一的元素與之對(duì)應(yīng),其對(duì)應(yīng)法則如圖所示(依次對(duì)齊);又知函數(shù)g(x)=,
若f(x1),f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列組成的英文單詞為exam,則x1+x2=   

查看答案和解析>>


同步練習(xí)冊(cè)答案