(5)設直線經過點.且.兩點到直線的距離相等.則直線的方程是 查看更多

 

題目列表(包括答案和解析)

經過點F(0,1)且與直線y=-1相切的動圓的圓心軌跡為M.點A、D在軌跡M上,且關于y軸對稱,過線段AD(兩端點除外)上的任意一點作直線,使直線與軌跡M在點D處的切線平行,設直線與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于
2
2
|AD|
,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

經過點F(0,1)且與直線y=-1相切的動圓的圓心軌跡為M.點A、D在軌跡M上,且關于y軸對稱,過線段AD(兩端點除外)上的任意一點作直線,使直線與軌跡M在點D處的切線平行,設直線與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于
2
2
|AD|
,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

經過點F(0,1)且與直線y=-1相切的動圓的圓心軌跡為M.點A、D在軌跡M上,且關于y軸對稱,過線段AD(兩端點除外)上的任意一點作直線,使直線與軌跡M在點D處的切線平行,設直線與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

已知直線l經過拋物線y2=4x的焦點F,且與拋物線相交于A、B兩點.
(1)若|AF|=4,求點A的坐標;
(2)設直線l的斜率為k,當線段AB的長等于5時,求k的值.
(3)求拋物線y2=4x上一點P到直線2x-y+4=0的距離的最小值.并求此時點P的坐標.

查看答案和解析>>

已知直線所經過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為3.

(Ⅰ) 求橢圓的標準方程;

     (Ⅱ) 設過點的直線交橢圓于、兩點,若,求直線的斜率的取值范圍.

查看答案和解析>>

一.選擇題:CDDA  DDBA  BBDC .

二.填空題:(13)60,(14),(15),(16)①②④ .

三.解答題:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的遞減區(qū)間是,;              ………5分

,           ………6分

的遞增區(qū)間是,.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根據單位圓內的三角函數線

可得.                                     ………10分

(18)解:由題意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由題設可知,.                    ………1分

,

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)設.                        ………7分

顯然,時,,                                       ………8分

, ∴當時,,∴,                       

時,,∴,                             ………9分

時,,∴,                        ………10分

時,恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

設AB=1,則AC=,CD=2.                                     ………2分

設F是AC與BD的交點,∵ABCD為梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE內,∴PD∥平面ACE.                             ………6分

(Ⅱ)以A為坐標原點,AB為y軸,AP為z軸建立空間直角坐標系,如圖.

設AB=1,則,,,             ………7分

,,,,     ………8分

,∵,∴,  …9分

,∵,∴, …10分

,      ………11分

∴二面角A-EC-P的大小為.………12分

注:學生使用其它解法應同步給分.

 

 

(21)解:(Ⅰ)設所求的橢圓E的方程為,                ………1分

、,將代入橢圓得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的橢圓E的方程為.                                ………6分

(Ⅱ)設、,則,,          ………7分

又設MN的中點為,則以上兩式相減得:,         ………8分

,………9分,     ,                  ………10分

又點在橢圓內,∴,                               ………11分

即,,∴.                         ………12分

注:學生使用其它解法應同步給分.

(22)解:(Ⅰ)∵,            ……2分

,

時,遞增,時,遞減,時,遞增,

所以的極大值點為,極小值點為,                     ……4分

,,              ……5分

的圖像如右圖,供評卷老師參考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

時,為,當時,為.                ……8分                 

的值域是為,             ……9分

所以,當時,令,并解得,

時,令,無解.

因此,的取值范圍是.                                     ……12分

注:學生使用其它解法應同步給分.

 

 

 

 


同步練習冊答案