(Ⅱ)問是否存在.使得?若存在.求出的值,若不存在.請(qǐng)說明理由.如圖.在四棱錐P-ABCD中.PA⊥平面ABCD.PC⊥AD .ABCD為梯形. AB∥CD.AB⊥BC. AB=BC=PA.點(diǎn)E在PB上.且PE=2EB. 查看更多

 

題目列表(包括答案和解析)

若存在實(shí)數(shù)k,b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x同時(shí)滿足:f(x)≥kx+b且g(x)≤kx+b,則稱直線:l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)).試問:
(1)函數(shù)f(x)和g(x)的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;
(2)函數(shù)f(x)和g(x)是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

若存在實(shí)數(shù)k,b,使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)x同時(shí)滿足:,則稱直線:為函數(shù)的“隔離直線”。已知(其中e為自然對(duì)數(shù)的底數(shù))。試問:

   (1)函數(shù)的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;

   (2)函數(shù)是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

若存在實(shí)數(shù)k,b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x同時(shí)滿足:f(x)≥kx+b且g(x)≤kx+b,則稱直線:l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)).試問:
(1)函數(shù)f(x)和g(x)的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;
(2)函數(shù)f(x)和g(x)是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>


(Ⅰ)若,記數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),求;
(Ⅱ)若,問是否存在實(shí)數(shù),使得中每一項(xiàng)恒小于它后面的項(xiàng)?若存
在,求出實(shí)數(shù)的取值范圍

查看答案和解析>>

 

設(shè)函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;

(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;

(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在)個(gè)正數(shù),使得成立?請(qǐng)證明你的結(jié)論.

 

 

 

 

 

查看答案和解析>>

一.選擇題:CDDA  DDBA  BBDC .

二.填空題:(13)60,(14),(15),(16)①②④ .

三.解答題:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的遞減區(qū)間是,;              ………5分

,           ………6分

的遞增區(qū)間是,.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

可得.                                     ………10分

(18)解:由題意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

,

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)設(shè).                        ………7分

顯然,時(shí),,                                       ………8分

, ∴當(dāng)時(shí),,∴,                       

當(dāng)時(shí),,∴,                             ………9分

當(dāng)時(shí),,∴,                        ………10分

當(dāng)時(shí),恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

設(shè)AB=1,則AC=,CD=2.                                     ………2分

設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

(Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

設(shè)AB=1,則,,,             ………7分

,,,     ………8分

設(shè),∵,∴,  …9分

設(shè),∵,,∴, …10分

,      ………11分

∴二面角A-EC-P的大小為.………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 

(21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

、,將代入橢圓得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的橢圓E的方程為.                                ………6分

(Ⅱ)設(shè)、,則,,          ………7分

又設(shè)MN的中點(diǎn)為,則以上兩式相減得:,         ………8分

,………9分,     ,                  ………10分

又點(diǎn)在橢圓內(nèi),∴,                               ………11分

即,,∴.                         ………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

(22)解:(Ⅰ)∵,            ……2分

,

時(shí),遞增,時(shí),遞減,時(shí),遞增,

所以的極大值點(diǎn)為,極小值點(diǎn)為,                     ……4分

,,,              ……5分

的圖像如右圖,供評(píng)卷老師參考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

當(dāng)時(shí),為,當(dāng)時(shí),為.                ……8分                 

的值域是為,             ……9分

所以,當(dāng)時(shí),令,并解得

當(dāng)時(shí),令,無解.

因此,的取值范圍是.                                     ……12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 

 

 


同步練習(xí)冊(cè)答案