C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

<progress id="qexot"></progress>
  • <center id="qexot"><ul id="qexot"><form id="qexot"></form></ul></center><form id="qexot"><dfn id="qexot"></dfn></form>
  • <big id="qexot"><legend id="qexot"><tfoot id="qexot"></tfoot></legend></big>
  • <big id="qexot"></big>
    <td id="qexot"><source id="qexot"></source></td>

    20090109

    三:解答題

    17.解:(1)由已知

       ∴ 

       ∵  

    ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

        又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

    所以                                                                                    

    (2)在△ABC中,   

                

            

         而   

    如果

        

                                                                       

                                      

    18.解:(1)點A不在兩條高線上,

     不妨設AC邊上的高:,AB邊上的高:

    所以AC,AB的方程為:,

    ,即

    ,

    由此可得直線BC的方程為:

    (2),

    由到角公式得:

    同理可算,

    19.解:(1)令

       則,因

    故函數(shù)上是增函數(shù),

    時,,即

       (2)令

        則

        所以在(,―1)遞減,(―1,0)遞增,

    (0,1)遞減,(1,)遞增。

    處取得極小值,且

    故存在,使原方程有4個不同實根。

    20.解(1)連結(jié)FO,F是AD的中點,

    *  OFAD,

    EO平面ABCD

    由三垂線定理,得EFAD,

    AD//BC,

    EFBC                          

    連結(jié)FB,可求得FB=PF=,則EFPB,

    PBBC=B,

     EF平面PBC。 

    (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

    連結(jié)AO,則EO//PD

    且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

    E是PB的中點,則O是BD的中點,且EO=PD=1

    在Rt△EOA中,AO=

       所以:異面直線PD與AE所成的角的大小為

    (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

    * PD平面ABCD,

    * PDBC,又DCBC,且PDDC=D,

    BC平面PDC

    * BCPC,

    EG//BC,則EGPC,

    FGPC

    所以FGE是二面角F―PC―B的平面角                                   

    在Rt△FEG中,EG=BC=1,GF=

    所以二面角F―PC―B的大小為   

    21.解(1), 

       ,令,

    所以遞增

    ,可得實數(shù)的取值范圍為

    (2)當時,

       所以:,

    即為 

    可化為

    由題意:存在,時,

    恒成立

    ,

    只要

     

    所以:

    ,知

    22.證明:(1)由已知得

      

    (2)由(1)得

    =

     


    同步練習冊答案