②直線BC與平面ABCD所成的角等于45, 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,直線PD與底面ABCD所成的角等于30°,
PF
=
FB
,
BE
BC
(0<λ<1).
(1)若EF∥平面PAC,求λ的值;
(2)當BE等于何值時,二面角P-DE-A的大小為45°?

查看答案和解析>>

正方體ABCD―A1B1C1D1的棱長為1,EA1B1的中點,則下列五個命題:

①點E到平面ABC1D1的距離為                 ②直線BC與平面ABC1D1所成的角等于45°;

AEDC1所成的角為;       ④二面角A-BD1-C的大小為.其中真命題是              .(寫出所有真命題的序號)

 

查看答案和解析>>

正方體ABCD-A1B1C1D1的棱長為1,EA1B1的中點,則下列五個命題:

①點E到平面ABC1D1的距離為

②直線BC與平面ABC1D1所成的角等于45°;

③空間四邊形ABCD1在正方體六個面內(nèi)形成六個射影,其面積的最小值是

AEDC1所成的角為

⑤二面角A-BD1C的大小為

其中真命題是________.(寫出所有真命題的序號)

查看答案和解析>>

(2007安徽江南十校模擬)如圖所示,正方體ABCD—的棱長為1E的中點,則下列五個命題:

A.點E到平面的距離是

B.直線BC與平面所成的角等于45°;

C.空間四邊形在正方體六個面內(nèi)的射影圍成的圖形中,面積最小值為;

D.BE所成的角為

E.二面角的大小為

其中真命題是________(按照原順序寫出所有真命題的代號)

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

        20090109

        三:解答題

        17.解:(1)由已知

           ∴ 

           ∵  

        ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

            又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

        所以                                                                                    

        (2)在△ABC中,   

                    

                

             而   

        如果,

            

                                                                           

                                          

        18.解:(1)點A不在兩條高線上,

         不妨設(shè)AC邊上的高:,AB邊上的高:

        所以AC,AB的方程為:,

        ,即

        ,

        由此可得直線BC的方程為:

        (2),

        由到角公式得:

        同理可算,。

        19.解:(1)令

           則,因

        故函數(shù)上是增函數(shù),

        時,,即

           (2)令

            則

            所以在(,―1)遞減,(―1,0)遞增,

        (0,1)遞減,(1,)遞增。

        處取得極小值,且

        故存在,使原方程有4個不同實根。

        20.解(1)連結(jié)FO,F是AD的中點,

        *  OFAD,

        EO平面ABCD

        由三垂線定理,得EFAD,

        AD//BC,

        EFBC                          

        連結(jié)FB,可求得FB=PF=,則EFPB,

        PBBC=B,

         EF平面PBC。 

        (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

        連結(jié)AO,則EO//PD

        且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

        E是PB的中點,則O是BD的中點,且EO=PD=1

        在Rt△EOA中,AO=,

           所以:異面直線PD與AE所成的角的大小為

        (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

        * PD平面ABCD,

        * PDBC,又DCBC,且PDDC=D,

        BC平面PDC

        * BCPC,

        EG//BC,則EGPC,

        FGPC

        所以FGE是二面角F―PC―B的平面角                                   

        在Rt△FEG中,EG=BC=1,GF=

        ,

        所以二面角F―PC―B的大小為   

        21.解(1), 

        ,

           ,令,

        所以遞增

        ,可得實數(shù)的取值范圍為

        (2)當時,

           所以:,

        即為 

        可化為

        由題意:存在時,

        恒成立

        ,

        只要

         

        所以:,

        ,知

        22.證明:(1)由已知得

          

        (2)由(1)得

        =

         


        同步練習(xí)冊答案