果輸出的數(shù)是在處的切線斜率.那么的范圍是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的導(dǎo)數(shù)處取到極大值,則的取值范圍是       ▲        

查看答案和解析>>

在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩種加工資的方案.第一種方案是每年年末(12月底)加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加1000元;第二種方案是每半年(6月底和12月底)各加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加300元,請選擇一種.
根據(jù)上述條件,試問:
(1)如果你將在該公司干十年,你將選擇哪一種加工資的方案?(說明理由)
(2)如果第二種方案中的每半年加300元改成每半年加a元,那么a在什么范圍內(nèi)取值時,選擇第二種方案總是比選擇第一種方案多加薪?

查看答案和解析>>

           在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩種加工資的方案。第一種方案是每年年末(12月底)加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加1000元;第二種方案是每半年(6月底和12月底)各加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加300元,請選擇一種.

       根據(jù)上述條件,試問:

   (1)如果你將在該公司干十年,你將選擇哪一種加工資的方案?(說明理由)

   (2)如果第二種方案中的每半年加300元改成每半年加a元,那么a在什么范圍內(nèi)取值時,選擇第二種方案總是比選擇第一種方案多加薪?

查看答案和解析>>

在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩種加工資的方案.第一種方案是每年年末(12月底)加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加1000元;第二種方案是每半年(6月底和12月底)各加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加300元,請選擇一種.
根據(jù)上述條件,試問:
(1)如果你將在該公司干十年,你將選擇哪一種加工資的方案?(說明理由)
(2)如果第二種方案中的每半年加300元改成每半年加a元,那么a在什么范圍內(nèi)取值時,選擇第二種方案總是比選擇第一種方案多加薪?

查看答案和解析>>

在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩種加工資的方案.第一種方案是每年年末(12月底)加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加1000元;第二種方案是每半年(6月底和12月底)各加薪一次,每次所加的工資數(shù)是在上次所加工資數(shù)的基礎(chǔ)上再增加300元,請選擇一種.
根據(jù)上述條件,試問:
(1)如果你將在該公司干十年,你將選擇哪一種加工資的方案?(說明理由)
(2)如果第二種方案中的每半年加300元改成每半年加a元,那么a在什么范圍內(nèi)取值時,選擇第二種方案總是比選擇第一種方案多加薪?

查看答案和解析>>

一.選擇題

題號

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時)

 

  2

  3

  4

  5 

 。

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

  6

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時, 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????     。ǎ捶郑

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是

①當(dāng)時,上單增,且無解;

、诋(dāng)時,上是增函數(shù),且,

有唯一解;

③當(dāng)時,

那么在單減,在單增,

    時,無解;

     時,有唯一解 ;

     時,

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時,有唯一解;

        時,無解;

       時,有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習(xí)冊答案