5.已知等差數(shù)列等于 A.23 B.95 C.135 D.138 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列滿足,,則數(shù)列的前10項的和等于(   )

A.23 B.95 C.135 D.138 

查看答案和解析>>

已知等差數(shù)列滿足,則數(shù)列的前10項的和等于(   )

A.23 B.95 C.135 D.138

查看答案和解析>>

已知△ABC的三內(nèi)角的大小成等差數(shù)列,tgAtgC=2+
3
求角A,B,C的大小,又已知頂點C的對邊c上的高等于4
3
,求三角形各邊a,b,c的長.(提示:必要時可驗證(1+
3
)2=4+2
3

查看答案和解析>>

已知△ABC的三內(nèi)角的大小成等差數(shù)列,tgAtgC=2+
3
求角A,B,C的大小,又已知頂點C的對邊c上的高等于4
3
,求三角形各邊a,b,c的長.(提示:必要時可驗證(1+
3
)2=4+2
3

查看答案和解析>>

給出下列五個命題:

①某班級一共有52名學(xué)生,現(xiàn)將該班學(xué)生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號、33號、46號同學(xué)在樣本中,那么樣本中另一位同學(xué)的編號為23;

②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;

③一組數(shù)據(jù)為,0,1,2,3,若該組數(shù)據(jù)的平均值為1,則樣本標準差為2;

④根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中,;

⑤如圖是根據(jù)抽樣檢測后得出的產(chǎn)品樣本凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是90.

其中真命題為(     )

A.①②④   B.②④⑤   C.②③④    D.③④⑤

 

查看答案和解析>>

 

一、選擇題(本大題共12小題,每小題5分,共60分。

1―5 BBACB    6―10 ADCDD    11―12 AB

二、填空題(本大題共4小題,每小題6分,共16分,

13.14   14.2   15.30   16.①③

三、解答題(本大題共6小題,共計76分)

17.解:(1)  …………2分

   (2)由題設(shè), …………10分

 …………12分

18.解:(1)記“第一次與第二次取到的球上的號碼的和是4”為事件A,則

 …………5分

所以第一次與第二次取到的地球上的號碼的和是4的概率 …………6分

   (2)記“第一次與第二次取到的上的號碼的積不小于6”為事件B,則

  …………11分

19.解法一:(1)∵E,F(xiàn)分別是AB和PB的中點,

∴EF∥PA  …………1分

又ABCD是正方形,∴CD⊥AD,…………2分

由PD⊥底面ABCD得CD⊥PD,CD⊥面PAD,

∴CD⊥PA,∴EF⊥CD。 …………4分

 

 

   (2)設(shè)AB=a,則由PD⊥底面ABCD及ABCD是正方形可求得

  •    (3)在平面PAD內(nèi)是存在一點G,使G在平面PCB

    上的射影為△PCB的外心,

    G點位置是AD的中點。  …………9分

    證明如下:由已知條件易證

    Rt△PDG≌Rt△CDG≌Rt△BAG,…………10分

    ∴GP=GB=GC,即點G到△PBC三頂點的距離相等。 ……11分

    ∴G在平面PCB上的射影為△PCB的外心。 …………12分

    解法二:以DA,DC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖)。

    1. <menuitem id="hwnuz"></menuitem>
    2.    (1)

        …………4分

       

       

         (2)設(shè)平面DEF的法向量為

         (3)假設(shè)存在點G滿足題意

      20.解:(1)設(shè)

         (2)

      21.(1)令 …………1分

        …………2分

         (2)設(shè)

         (3)由

      ∴不等式化為  …………6分

      由(2)已證 …………7分

      ①當(dāng)

      ②當(dāng)不成立,∴不等式的解集為 …………10分

      ③當(dāng)

      22.解:(1)  …………1分

         (2)設(shè)

      ①當(dāng)

      ②當(dāng)

       


      同步練習(xí)冊答案